論文の概要: Human-like Few-Shot Learning via Bayesian Reasoning over Natural
Language
- arxiv url: http://arxiv.org/abs/2306.02797v3
- Date: Fri, 29 Sep 2023 16:45:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-02 18:15:49.034508
- Title: Human-like Few-Shot Learning via Bayesian Reasoning over Natural
Language
- Title(参考訳): 自然言語によるベイズ推論によるヒューマンライクなFew-Shot学習
- Authors: Kevin Ellis
- Abstract要約: 人間は幅広い概念を効率的に学習することができる。
我々はその意味で人間らしくなろうとする帰納的学習のモデルを導入する。
- 参考スコア(独自算出の注目度): 7.11993673836973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A core tension in models of concept learning is that the model must carefully
balance the tractability of inference against the expressivity of the
hypothesis class. Humans, however, can efficiently learn a broad range of
concepts. We introduce a model of inductive learning that seeks to be
human-like in that sense. It implements a Bayesian reasoning process where a
language model first proposes candidate hypotheses expressed in natural
language, which are then re-weighed by a prior and a likelihood. By estimating
the prior from human data, we can predict human judgments on learning problems
involving numbers and sets, spanning concepts that are generative,
discriminative, propositional, and higher-order.
- Abstract(参考訳): 概念学習のモデルにおける中心的な緊張は、モデルが仮説クラスの表現率と推論のトラクション可能性のバランスを慎重に取らなければならないことである。
しかし、人間は幅広い概念を効率的に学習することができる。
我々はその意味で人間らしくなろうとする帰納的学習のモデルを導入する。
ベイズ的推論プロセスを実装しており、まず言語モデルが自然言語で表現された候補仮説を提案し、その仮説を事前に再検討する。
人間のデータから事前推定を行うことで、数と集合に関する学習問題、生成的、判別的、命題的、高次的な概念にまたがる人間の判断を予測できる。
関連論文リスト
- Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
検索強化に関して,言語モデルの信頼性に焦点をあてる。
検索強化言語モデルには,文脈的知識とパラメトリック的知識の両方に応じて応答を供給できる本質的な能力があると考えられる。
言語モデルと人間の嗜好の整合性に着想を得て,検索強化言語モデルを外部証拠にのみ依存する状況に整合させるための第一歩を踏み出した。
論文 参考訳(メタデータ) (2024-10-22T09:25:21Z) - Perceptions of Linguistic Uncertainty by Language Models and Humans [26.69714008538173]
言語モデルが不確実性の言語表現を数値応答にどうマッピングするかを検討する。
10モデル中7モデルで不確実性表現を確率的応答に人間的な方法でマッピングできることが判明した。
この感度は、言語モデルは以前の知識に基づいてバイアスの影響を受けやすいことを示している。
論文 参考訳(メタデータ) (2024-07-22T17:26:12Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Language Models are Bounded Pragmatic Speakers: Understanding RLHF from
a Bayesian Cognitive Modeling Perspective [2.8282906214258805]
本稿では,有界プラグマティック話者と呼ばれる確率論的認知モデルを定式化する。
人間のフィードバックからの強化学習によって微調整された大きな言語モデルは、高速でスローなモデルに似た思考モデルを具現化していることを示す。
論文 参考訳(メタデータ) (2023-05-28T16:04:48Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
我々は,その極性に関係なく,任意の形式のフィードバックから学習し,最適化が容易な新しい手法であるChain of Hindsightを提案する。
我々は、あらゆる種類のフィードバックを文のシーケンスに変換し、それをモデルを微調整するために使用する。
そうすることで、モデルはフィードバックに基づいて出力を生成するように訓練され、負の属性やエラーを特定し修正する。
論文 参考訳(メタデータ) (2023-02-06T10:28:16Z) - What Artificial Neural Networks Can Tell Us About Human Language
Acquisition [47.761188531404066]
自然言語処理のための機械学習の急速な進歩は、人間がどのように言語を学ぶかについての議論を変革する可能性がある。
計算モデルによる学習可能性の関連性を高めるためには,人間に対して大きな優位性を持たず,モデル学習者を訓練する必要がある。
論文 参考訳(メタデータ) (2022-08-17T00:12:37Z) - Training Language Models with Natural Language Feedback [51.36137482891037]
3段階学習アルゴリズムを用いてモデル出力の言語フィードバックから学習する。
合成実験において、まず言語モデルがフィードバックを正確に組み込んで改良を行うかどうかを評価する。
人間の手書きフィードバックのサンプルは100程度しかなく, 学習アルゴリズムはGPT-3モデルを微調整し, ほぼ人間レベルの要約を行う。
論文 参考訳(メタデータ) (2022-04-29T15:06:58Z) - Probing Neural Language Models for Human Tacit Assumptions [36.63841251126978]
人間はステレオタイプ的暗黙の仮定(STA)または一般的な概念についての命題的信念を持っている。
大規模テキストコーパスキャプチャSTAで訓練された最近のニューラルネットワーク言語モデルを評価するために,単語予測プロンプトの診断セットを構築した。
論文 参考訳(メタデータ) (2020-04-10T01:48:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。