Robust Fiber ODF Estimation Using Deep Constrained Spherical
Deconvolution for Diffusion MRI
- URL: http://arxiv.org/abs/2306.02900v1
- Date: Mon, 5 Jun 2023 14:06:40 GMT
- Title: Robust Fiber ODF Estimation Using Deep Constrained Spherical
Deconvolution for Diffusion MRI
- Authors: Tianyuan Yao, Francois Rheault, Leon Y Cai, Vishwesh nath, Zuhayr
Asad, Nancy Newlin, Can Cui, Ruining Deng, Karthik Ramadass, Andrea Shafer,
Susan Resnick, Kurt Schilling, Bennett A. Landman, Yuankai Huo
- Abstract summary: A common practice to model the measured DW-MRI signal is via fiber orientation distribution function (fODF)
measurement variabilities (e.g., inter- and intra-site variability, hardware performance, and sequence design) are inevitable during the acquisition of DW-MRI.
Most existing model-based methods (e.g., constrained spherical deconvolution (CSD)) and learning based methods (e.g., deep learning (DL)) do not explicitly consider such variabilities in fODF modeling.
We propose a novel data-driven deep constrained spherical deconvolution method to
- Score: 7.9283612449524155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion-weighted magnetic resonance imaging (DW-MRI) is a critical imaging
method for capturing and modeling tissue microarchitecture at a millimeter
scale. A common practice to model the measured DW-MRI signal is via fiber
orientation distribution function (fODF). This function is the essential first
step for the downstream tractography and connectivity analyses. With recent
advantages in data sharing, large-scale multi-site DW-MRI datasets are being
made available for multi-site studies. However, measurement variabilities
(e.g., inter- and intra-site variability, hardware performance, and sequence
design) are inevitable during the acquisition of DW-MRI. Most existing
model-based methods (e.g., constrained spherical deconvolution (CSD)) and
learning based methods (e.g., deep learning (DL)) do not explicitly consider
such variabilities in fODF modeling, which consequently leads to inferior
performance on multi-site and/or longitudinal diffusion studies. In this paper,
we propose a novel data-driven deep constrained spherical deconvolution method
to explicitly constrain the scan-rescan variabilities for a more reproducible
and robust estimation of brain microstructure from repeated DW-MRI scans.
Specifically, the proposed method introduces a new 3D volumetric
scanner-invariant regularization scheme during the fODF estimation. We study
the Human Connectome Project (HCP) young adults test-retest group as well as
the MASiVar dataset (with inter- and intra-site scan/rescan data). The
Baltimore Longitudinal Study of Aging (BLSA) dataset is employed for external
validation. From the experimental results, the proposed data-driven framework
outperforms the existing benchmarks in repeated fODF estimation. The proposed
method is assessing the downstream connectivity analysis and shows increased
performance in distinguishing subjects with different biomarkers.
Related papers
- Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI [10.096809077954095]
An incomplete field-of-view (FOV) in diffusion magnetic resonance imaging (dMRI) can severely hinder the volumetric and bundle analyses of whole-brain white matter connectivity.
We propose a novel framework for imputing dMRI scans in the incomplete part of the FOV by integrating the learned diffusion features in the acquired part of the FOV to the complete brain anatomical structure.
arXiv Detail & Related papers (2024-09-20T18:41:29Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - DreaMR: Diffusion-driven Counterfactual Explanation for Functional MRI [0.0]
We introduce the first diffusion-driven counterfactual method, DreaMR, to enable fMRI interpretation with high specificity, plausibility and fidelity.
DreaMR performs diffusion-based resampling of an input fMRI sample to alter the decision of a downstream classifier, and then computes the minimal difference between the original and counterfactual samples for explanation.
Comprehensive experiments on neuroimaging datasets demonstrate the superior specificity, fidelity and efficiency of DreaMR in sample generation over state-of-the-art counterfactual methods for fMRI interpretation.
arXiv Detail & Related papers (2023-07-18T18:46:07Z) - A Unified Learning Model for Estimating Fiber Orientation Distribution
Functions on Heterogeneous Multi-shell Diffusion-weighted MRI [7.619657591752497]
Diffusion-weighted (DW) MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space.
Recent developments in micro-structure imaging and multi-tissue decomposition have sparked renewed attention to the radial b-value dependence of the signal.
We present a unified dynamic network with a single-stage spherical convolutional neural network, which allows efficient fiber orientation distribution function estimation.
arXiv Detail & Related papers (2023-03-29T00:58:18Z) - How can spherical CNNs benefit ML-based diffusion MRI parameter
estimation? [2.4417196796959906]
Spherical convolutional neural networks (S-CNN) offer distinct advantages over conventional fully-connected networks (FCN)
Current clinical practice commonly acquires dMRI data consisting of only 6 diffusion weighted images (DWIs)
arXiv Detail & Related papers (2022-07-01T17:49:26Z) - Federated Deep AUC Maximization for Heterogeneous Data with a Constant
Communication Complexity [77.78624443410216]
We propose improved FDAM algorithms for detecting heterogeneous chest data.
A result of this paper is that the communication of the proposed algorithm is strongly independent of the number of machines and also independent of the accuracy level.
Experiments have demonstrated the effectiveness of our FDAM algorithm on benchmark datasets and on medical chest Xray images from different organizations.
arXiv Detail & Related papers (2021-02-09T04:05:19Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z) - Meta-modal Information Flow: A Method for Capturing Multimodal Modular
Disconnectivity in Schizophrenia [11.100316178148994]
We introduce a method that takes advantage of multimodal data in addressing the hypotheses of disconnectivity and dysfunction within schizophrenia (SZ)
We propose a modularity-based method that can be applied to the GGM to identify links that are associated with mental illness across a multimodal data set.
Through simulation and real data, we show our approach reveals important information about disease-related network disruptions that are missed with a focus on a single modality.
arXiv Detail & Related papers (2020-01-06T18:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.