Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning
- URL: http://arxiv.org/abs/2306.02990v1
- Date: Mon, 5 Jun 2023 16:01:33 GMT
- Title: Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning
- Authors: Yao Tang, Guangxu Zhu, Wei Xu, Man Hon Cheung, Tat-Ming Lok, Shuguang
Cui
- Abstract summary: Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
- Score: 52.7230652428711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated edge learning (FEEL) enables privacy-preserving model training
through periodic communication between edge devices and the server. Unmanned
Aerial Vehicle (UAV)-mounted edge devices are particularly advantageous for
FEEL due to their flexibility and mobility in efficient data collection. In
UAV-assisted FEEL, sensing, computation, and communication are coupled and
compete for limited onboard resources, and UAV deployment also affects sensing
and communication performance. Therefore, the joint design of UAV deployment
and resource allocation is crucial to achieving the optimal training
performance. In this paper, we address the problem of joint UAV deployment
design and resource allocation for FEEL via a concrete case study of human
motion recognition based on wireless sensing. We first analyze the impact of
UAV deployment on the sensing quality and identify a threshold value for the
sensing elevation angle that guarantees a satisfactory quality of data samples.
Due to the non-ideal sensing channels, we consider the probabilistic sensing
model, where the successful sensing probability of each UAV is determined by
its position. Then, we derive the upper bound of the FEEL training loss as a
function of the sensing probability. Theoretical results suggest that the
convergence rate can be improved if UAVs have a uniform successful sensing
probability. Based on this analysis, we formulate a training time minimization
problem by jointly optimizing UAV deployment, integrated sensing, computation,
and communication (ISCC) resources under a desirable optimality gap constraint.
To solve this challenging mixed-integer non-convex problem, we apply the
alternating optimization technique, and propose the bandwidth, batch size, and
position optimization (BBPO) scheme to optimize these three decision variables
alternately.
Related papers
- Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
This paper studies a new latency optimization problem in unmanned aerial vehicles (UAVs)-enabled federated learning (FL) with integrated sensing and communication.
We develop a simple yet efficient iterative algorithm to find a high-quality approximate solution, saving system latency up to 68.54% compared to benchmark schemes.
arXiv Detail & Related papers (2024-11-01T14:25:24Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, artificial intelligence (AI) model training, and wireless communications.
It is impractical to send raw data of devices to UAV servers for model training.
In this paper, we develop an asynchronous federated learning framework for multi-UAV-enabled networks.
arXiv Detail & Related papers (2020-11-28T18:58:34Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.