Age of Information Minimization in UAV-Enabled Integrated Sensing and Communication Systems
- URL: http://arxiv.org/abs/2507.14299v1
- Date: Fri, 18 Jul 2025 18:17:09 GMT
- Title: Age of Information Minimization in UAV-Enabled Integrated Sensing and Communication Systems
- Authors: Yu Bai, Yifan Zhang, Boxuan Xie, Zheng Chang, Yanru Zhang, Riku Jantti, Zhu Han,
- Abstract summary: Unmanned aerial vehicles (UAVs) equipped with integrated sensing and communication (ISAC) capabilities are envisioned to play a pivotal role in future wireless networks.<n>We propose Age Information (AoI) system that simultaneously performs target sensing and multi-user communication.
- Score: 34.92822911897626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned aerial vehicles (UAVs) equipped with integrated sensing and communication (ISAC) capabilities are envisioned to play a pivotal role in future wireless networks due to their enhanced flexibility and efficiency. However, jointly optimizing UAV trajectory planning, multi-user communication, and target sensing under stringent resource constraints and time-critical conditions remains a significant challenge. To address this, we propose an Age of Information (AoI)-centric UAV-ISAC system that simultaneously performs target sensing and serves multiple ground users, emphasizing information freshness as the core performance metric. We formulate a long-term average AoI minimization problem that jointly optimizes the UAV's flight trajectory and beamforming. To tackle the high-dimensional, non-convexity of this problem, we develop a deep reinforcement learning (DRL)-based algorithm capable of providing real-time decisions on UAV movement and beamforming for both radar sensing and multi-user communication. Specifically, a Kalman filter is employed for accurate target state prediction, regularized zero-forcing is utilized to mitigate inter-user interference, and the Soft Actor-Critic algorithm is applied for training the DRL agent on continuous actions. The proposed framework adaptively balances the trade-offs between sensing accuracy and communication quality. Extensive simulation results demonstrate that our proposed method consistently achieves lower average AoI compared to baseline approaches.
Related papers
- AoI-Sensitive Data Forwarding with Distributed Beamforming in UAV-Assisted IoT [32.6091251316091]
This paper proposes a UAV-assisted system based on distributed beamforming to enhance age forwarding information (AoI) in Internet of Things (IoT)<n>We propose a deep reinforcement learning (DRL)-based algorithm to solve the problem, thereby enhancing stability and accelerate convergence.
arXiv Detail & Related papers (2025-02-13T07:48:36Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.<n>In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.<n>The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way.
Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs.
We propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation.
arXiv Detail & Related papers (2023-12-08T01:57:10Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Muti-Agent Proximal Policy Optimization For Data Freshness in
UAV-assisted Networks [4.042622147977782]
We focus on the case where the collected data is time-sensitive, and it is critical to maintain its timeliness.
Our objective is to optimally design the UAVs' trajectories and the subsets of visited IoT devices such as the global Age-of-Updates (AoU) is minimized.
arXiv Detail & Related papers (2023-03-15T15:03:09Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.