論文の概要: Benchmarking Large Language Models on CMExam -- A Comprehensive Chinese
Medical Exam Dataset
- arxiv url: http://arxiv.org/abs/2306.03030v1
- Date: Mon, 5 Jun 2023 16:48:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 13:55:47.898060
- Title: Benchmarking Large Language Models on CMExam -- A Comprehensive Chinese
Medical Exam Dataset
- Title(参考訳): cmexamによる大規模言語モデルのベンチマーク - 総合的な中国医学試験データセット
- Authors: Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian,
Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu, Michael Lingzhi Li
- Abstract要約: 中国国立医学ライセンス試験から得られたCMExamについて紹介する。
CMExamは、標準化および客観的評価のための60K以上の多重選択質問と、オープンエンドなモデル推論評価のためのソリューション説明で構成されている。
LLMの詳細な分析のために、我々は医療専門家に、病気グループ、臨床部門、医学分野、能力領域、難易度レベルを含む5つの追加の質問点アノテーションのラベル付けを依頼した。
- 参考スコア(独自算出の注目度): 22.690098900459805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in large language models (LLMs) have transformed the
field of question answering (QA). However, evaluating LLMs in the medical field
is challenging due to the lack of standardized and comprehensive datasets. To
address this gap, we introduce CMExam, sourced from the Chinese National
Medical Licensing Examination. CMExam consists of 60K+ multiple-choice
questions for standardized and objective evaluations, as well as solution
explanations for model reasoning evaluation in an open-ended manner. For
in-depth analyses of LLMs, we invited medical professionals to label five
additional question-wise annotations, including disease groups, clinical
departments, medical disciplines, areas of competency, and question difficulty
levels. Alongside the dataset, we further conducted thorough experiments with
representative LLMs and QA algorithms on CMExam. The results show that GPT-4
had the best accuracy of 61.5% and a weighted F1 score of 0.616. These results
highlight a great disparity when compared to human accuracy, which stood at
71.6%. For explanation tasks, while LLMs could generate relevant reasoning and
demonstrate improved performance after finetuning, they fall short of a desired
standard, indicating ample room for improvement. To the best of our knowledge,
CMExam is the first Chinese medical exam dataset to provide comprehensive
medical annotations. The experiments and findings of LLM evaluation also
provide valuable insights into the challenges and potential solutions in
developing Chinese medical QA systems and LLM evaluation pipelines. The dataset
and relevant code are available at https://github.com/williamliujl/CMExam.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、質問応答(QA)の分野を変えている。
しかし、標準化された包括的なデータセットがないため、医療分野におけるLCMの評価は困難である。
このギャップに対処するため,中国国立医学ライセンス試験から得られたCMExamを紹介する。
CMExamは、標準化および客観的評価のための60K以上の多重選択質問と、オープンエンドなモデル推論評価のためのソリューション説明で構成されている。
llmsの詳細な分析のために、我々は医療専門家に、疾患グループ、臨床部門、医学分野、能力領域、質問難易度レベルを含む5つの追加の質問項目をラベル付けするよう求めた。
データセットとともに,CMExam上で,代表LLMとQAアルゴリズムを用いた徹底的な実験を行った。
その結果、GPT-4は61.5%、重み付きF1スコアは0.616であった。
これらの結果は、人的精度が71.6%であったのに対して、大きな違いを示している。
説明タスクでは、LCMは関連する推論を生成し、微調整後の性能向上を示すが、望ましい標準には達せず、改善の余地が十分にある。
私たちの知る限り、CMExamは、包括的な医療アノテーションを提供する最初の中国の医学試験データセットです。
LLM評価の実験と結果はまた、中国の医療用QAシステムとLLM評価パイプラインの開発における課題と潜在的な解決策に関する貴重な知見を提供する。
データセットと関連するコードはhttps://github.com/williamliujl/cmexamで入手できる。
関連論文リスト
- Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
MedS-Benchは大規模言語モデル(LLM)の性能を臨床的に評価するためのベンチマークである。
MedS-Benchは、臨床報告の要約、治療勧告、診断、名前付きエンティティ認識、医療概念説明を含む、11のハイレベルな臨床タスクにまたがる。
MedS-Insは58の医療指向言語コーパスで構成され、112のタスクで1350万のサンプルを収集している。
論文 参考訳(メタデータ) (2024-08-22T17:01:34Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
本稿では,MedExQAについて紹介する。MedExQAは,医学的知識に関する大規模言語モデル (LLM) の理解を説明を通じて評価するための,医学的質問応答の新しいベンチマークである。
5つの異なる医療専門分野のデータセットを構築することで、現在の医療QAベンチマークの大きなギャップに対処する。
本研究は、医学LLMにおける説明可能性の重要性を強調し、分類精度以上のモデルを評価する効果的な方法論を提案し、特定の分野である音声言語病理学に光を当てる。
論文 参考訳(メタデータ) (2024-06-10T14:47:04Z) - TCMD: A Traditional Chinese Medicine QA Dataset for Evaluating Large Language Models [22.76485170022542]
従来の中国医学検査課題を解くための大規模な手動指導を含む,新しいQAデータセットを提案する。
TCMDは、注釈付き医療科目で、さまざまな領域にまたがって大量の質問を集めています。
論文 参考訳(メタデータ) (2024-06-07T13:48:15Z) - Performance of large language models in numerical vs. semantic medical knowledge: Benchmarking on evidence-based Q&As [1.0034156461900003]
大規模言語モデル(LLM)は言語ベースの臨床実践の多くの側面において有望な結果を示す。
包括的医療知識グラフ(50,00以上の査読済み記事から得られたデータ)を用いて「EBMQA」を作成しました。
私たちはこのデータセットを、最先端の2つのLLMであるChat-GPT4とClaude3-Opusについて24,500以上の質問を使ってベンチマークした。
いずれのLLMも数値QAよりもセマンティックに優れており,Claude3は数値QAでGPT4を上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-06T08:41:46Z) - Multiple Choice Questions and Large Languages Models: A Case Study with Fictional Medical Data [3.471944921180245]
非存在腺であるGlianorexに焦点をあてた架空の医療ベンチマークを開発した。
このアプローチにより、LSMの知識をテストテイク能力から切り離すことができます。
我々は、これらの質問をゼロショット設定で、様々なオープンソース、プロプライエタリ、ドメイン固有のLCMを評価した。
論文 参考訳(メタデータ) (2024-06-04T15:08:56Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
中国の医療分野の総合的なベンチマークであるMedBenchを紹介する。
このベンチマークは、中国の医療ライセンス試験、居住者標準化訓練試験、および現実世界のクリニックの4つの主要なコンポーネントで構成されている。
幅広い実験を行い, 多様な視点から詳細な分析を行い, 以下の結果を得た。
論文 参考訳(メタデータ) (2023-12-20T07:01:49Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
我々は中国医学領域向けに明示的に設計されたベンチマークLSMであるChiMed-GPTを提案する。
ChiMed-GPTは、事前訓練、SFT、RLHFを含む総合的な訓練体制を実施。
我々は,ChiMed-GPTを患者識別に関する態度尺度の実行を促すことによって,潜在的なバイアスを分析した。
論文 参考訳(メタデータ) (2023-11-10T12:25:32Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
大型言語モデル(LLM)は、人間レベルの流布で自然言語の指示に従うことができる。
医療のための現実的なテキスト生成タスクにおけるLCMの評価は依然として困難である。
我々は、EHRデータのための983の自然言語命令のベンチマークデータセットであるMedAlignを紹介する。
論文 参考訳(メタデータ) (2023-08-27T12:24:39Z) - Large Language Models Leverage External Knowledge to Extend Clinical
Insight Beyond Language Boundaries [48.48630043740588]
ChatGPTやMed-PaLMのような大規模言語モデル(LLM)は、様々な質問応答タスクに優れています。
我々は,その性能を高めるために,新しい文脈内学習フレームワークを開発した。
論文 参考訳(メタデータ) (2023-05-17T12:31:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。