Structured Voronoi Sampling
- URL: http://arxiv.org/abs/2306.03061v3
- Date: Thu, 6 Jun 2024 09:30:19 GMT
- Title: Structured Voronoi Sampling
- Authors: Afra Amini, Li Du, Ryan Cotterell,
- Abstract summary: In this paper, we take an important step toward building a principled approach for sampling from language models with gradient-based methods.
We name our gradient-based technique Structured Voronoi Sampling (SVS)
In a controlled generation task, SVS is able to generate fluent and diverse samples while following the control targets significantly better than other methods.
- Score: 61.629198273926676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient-based sampling algorithms have demonstrated their effectiveness in text generation, especially in the context of controlled text generation. However, there exists a lack of theoretically grounded and principled approaches for this task. In this paper, we take an important step toward building a principled approach for sampling from language models with gradient-based methods. We use discrete distributions given by language models to define densities and develop an algorithm based on Hamiltonian Monte Carlo to sample from them. We name our gradient-based technique Structured Voronoi Sampling (SVS). In an experimental setup where the reference distribution is known, we show that the empirical distribution of SVS samples is closer to the reference distribution compared to alternative sampling schemes. Furthermore, in a controlled generation task, SVS is able to generate fluent and diverse samples while following the control targets significantly better than other methods.
Related papers
- Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers [49.1574468325115]
We introduce a unified convergence analysis framework for deterministic samplers.
Our framework achieves iteration complexity of $tilde O(d2/epsilon)$.
We also provide a detailed analysis of Denoising Implicit Diffusion Models (DDIM)-type samplers.
arXiv Detail & Related papers (2024-10-18T07:37:36Z) - An Efficient Quasi-Random Sampling for Copulas [3.400056739248712]
This paper proposes the use of generative models, such as Generative Adrial Networks (GANs), to generate quasi-random samples for any copula.
GANs are a type of implicit generative models used to learn the distribution of complex data, thus facilitating easy sampling.
arXiv Detail & Related papers (2024-03-08T13:01:09Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - Enhancing Score-Based Sampling Methods with Ensembles [0.0]
We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F"ollmer sampler.
We demonstrate the efficacy of ensemble strategies through various examples, including low- to medium-dimensionality sampling problems.
Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable.
arXiv Detail & Related papers (2024-01-31T01:51:29Z) - Principled Gradient-based Markov Chain Monte Carlo for Text Generation [77.46654898866291]
We propose several faithful gradient-based sampling algorithms to sample from the target energy-based text distribution correctly.
We demonstrate that faithful samplers are able to generate more fluent text while adhering to the control objectives better.
arXiv Detail & Related papers (2023-12-29T18:00:56Z) - Sampling, Diffusions, and Stochastic Localization [10.368585938419619]
Diffusions are a successful technique to sample from high-dimensional distributions.
localization is a technique to prove mixing of Markov Chains and other functional inequalities in high dimension.
An algorithmic version of localization was introduced in [EAMS2022] to obtain an algorithm that samples from certain statistical mechanics models.
arXiv Detail & Related papers (2023-05-18T04:01:40Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
We put forward four methods for learning sampling distributions from observed measurements.
Experiments demonstrate that learned sampling distributions exhibit better performance than designed, minimum-degeneracy sampling distributions.
arXiv Detail & Related papers (2023-02-02T15:50:21Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.