Sampling, Diffusions, and Stochastic Localization
- URL: http://arxiv.org/abs/2305.10690v1
- Date: Thu, 18 May 2023 04:01:40 GMT
- Title: Sampling, Diffusions, and Stochastic Localization
- Authors: Andrea Montanari
- Abstract summary: Diffusions are a successful technique to sample from high-dimensional distributions.
localization is a technique to prove mixing of Markov Chains and other functional inequalities in high dimension.
An algorithmic version of localization was introduced in [EAMS2022] to obtain an algorithm that samples from certain statistical mechanics models.
- Score: 10.368585938419619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusions are a successful technique to sample from high-dimensional
distributions can be either explicitly given or learnt from a collection of
samples. They implement a diffusion process whose endpoint is a sample from the
target distribution and whose drift is typically represented as a neural
network. Stochastic localization is a successful technique to prove mixing of
Markov Chains and other functional inequalities in high dimension. An
algorithmic version of stochastic localization was introduced in [EAMS2022], to
obtain an algorithm that samples from certain statistical mechanics models.
This notes have three objectives: (i) Generalize the construction [EAMS2022]
to other stochastic localization processes; (ii) Clarify the connection between
diffusions and stochastic localization. In particular we show that standard
denoising diffusions are stochastic localizations but other examples that are
naturally suggested by the proposed viewpoint; (iii) Describe some insights
that follow from this viewpoint.
Related papers
- Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
We introduce Learned Reference-based Diffusion Sampler (LRDS), a methodology specifically designed to leverage prior knowledge on the location of the target modes.
LRDS proceeds in two steps by learning a reference diffusion model on samples located in high-density space regions.
We experimentally demonstrate that LRDS best exploits prior knowledge on the target distribution compared to competing algorithms on a variety of challenging distributions.
arXiv Detail & Related papers (2024-10-25T10:23:34Z) - Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers [49.1574468325115]
We introduce a unified convergence analysis framework for deterministic samplers.
Our framework achieves iteration complexity of $tilde O(d2/epsilon)$.
We also provide a detailed analysis of Denoising Implicit Diffusion Models (DDIM)-type samplers.
arXiv Detail & Related papers (2024-10-18T07:37:36Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Conditional sampling within generative diffusion models [12.608803080528142]
We present a review of existing computational approaches to conditional sampling within generative diffusion models.
We highlight key methodologies that either utilise the joint distribution, or rely on (pre-trained) marginal distributions with explicit likelihoods.
arXiv Detail & Related papers (2024-09-15T07:48:40Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Stochastic Localization via Iterative Posterior Sampling [2.1383136715042417]
We consider a general localization framework and introduce an explicit class of observation processes, associated with flexible denoising schedules.
We provide a complete methodology, $textitStochastic localization via Iterative Posterior Sampling$ (SLIPS), to obtain approximate samples of this dynamics, and as a byproduct, samples from the target distribution.
We illustrate the benefits and applicability of SLIPS on several benchmarks of multi-modal distributions, including mixtures in increasing dimensions, logistic regression and high-dimensional field system from statistical-mechanics.
arXiv Detail & Related papers (2024-02-16T15:28:41Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces [0.0]
We develop a theoretical formulation for arbitrary discrete-state Markov processes in the forward diffusion process.
As an example, we introduce Blackout Diffusion'', which learns to produce samples from an empty image instead of from noise.
arXiv Detail & Related papers (2023-05-18T16:24:12Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.