論文の概要: Imaging the Meissner effect and flux trapping in a hydride
superconductor at megabar pressures using a nanoscale quantum sensor
- arxiv url: http://arxiv.org/abs/2306.03122v1
- Date: Mon, 5 Jun 2023 18:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 18:58:23.112577
- Title: Imaging the Meissner effect and flux trapping in a hydride
superconductor at megabar pressures using a nanoscale quantum sensor
- Title(参考訳): ナノスケール量子センサを用いた水素化物超伝導体のメガバール圧力下でのマイスナー効果とフラックストラップのイメージング
- Authors: Prabudhya Bhattacharyya, Wuhao Chen, Xiaoli Huang, Shubhayu
Chatterjee, Benchen Huang, Bryce Kobrin, Yuanqi Lyu, Thomas J. Smart, Maxwell
Block, Esther Wang, Zhipan Wang, Weijie Wu, Satcher Hsieh, He Ma, Srinivas
Mandyam, Bijuan Chen, Emily Davis, Zachary M. Geballe, Chong Zu, Viktor
Struzhkin, Raymond Jeanloz, Joel E. Moore, Tian Cui, Giulia Galli, Bertrand
I. Halperin, Chris R. Laumann, Norman Y. Yao
- Abstract要約: ダイヤモンドアンビルセル内部の局所磁力測定を,大気圧下でサブミクロン空間分解能で行うことができることを示す。
最近発見された水素化物超伝導体であるCeH$_9$を特徴付けるために,本手法を適用した。
- 参考スコア(独自算出の注目度): 16.508647472216516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By directly altering microscopic interactions, pressure provides a powerful
tuning knob for the exploration of condensed phases and geophysical phenomena.
The megabar regime represents an exciting frontier, where recent discoveries
include novel high-temperature superconductors, as well as structural and
valence phase transitions. However, at such high pressures, many conventional
measurement techniques fail. Here, we demonstrate the ability to perform local
magnetometry inside of a diamond anvil cell with sub-micron spatial resolution
at megabar pressures. Our approach utilizes a shallow layer of Nitrogen-Vacancy
(NV) color centers implanted directly within the anvil; crucially, we choose a
crystal cut compatible with the intrinsic symmetries of the NV center to enable
functionality at megabar pressures. We apply our technique to characterize a
recently discovered hydride superconductor, CeH$_9$. By performing simultaneous
magnetometry and electrical transport measurements, we observe the dual
signatures of superconductivity: local diamagnetism characteristic of the
Meissner effect and a sharp drop of the resistance to near zero. By locally
mapping the Meissner effect and flux trapping, we directly image the geometry
of superconducting regions, revealing significant inhomogeneities at the micron
scale. Our work brings quantum sensing to the megabar frontier and enables the
closed loop optimization of superhydride materials synthesis.
- Abstract(参考訳): 微視的な相互作用を直接変化させることで、圧力は凝縮相や物理現象の探索に強力なチューニングノブを提供する。
メガバー構造はエキサイティングなフロンティアであり、近年の発見には、新しい高温超伝導体、構造および原子価相転移が含まれる。
しかし、そのような高圧では、多くの従来の計測技術が失敗する。
ここでは,ダイヤモンドアンビルセル内の局所磁力測定を,メガバール圧力でサブミクロン空間分解能で行う能力を示す。
提案手法では,窒素空白 (nv) カラーセンタの浅層をアンビル内に直接注入し, nvセンターの固有対称性に適合する結晶カットを選択し, メガバール圧力で機能性を実現する。
この手法を用いて最近発見された水素化物超伝導体ceh$_9$を特徴付ける。
同時磁力計と電気輸送測定により, マイスナー効果の局所磁気特性と, ほぼゼロに近い抵抗の急激な低下という, 超伝導の2つの特徴を観測した。
マイスナー効果とフラックストラップの局所マッピングにより、超伝導領域の幾何学を直接画像化し、ミクロンスケールで重要な不均一性を明らかにする。
我々の研究は、メガバールのフロンティアに量子センシングをもたらし、超ハイドライド材料合成の閉ループ最適化を可能にする。
関連論文リスト
- Cavity-enhanced superconductivity via band engineering [0.0]
量子化キャビティモードと相互作用する2次元電子ガスを考える。
共振器内の電子と光子との結合は超伝導ギャップを増大させる。
論文 参考訳(メタデータ) (2024-05-14T14:21:02Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
我々は,高感度・サブスケール空間分解能を有するメガバール圧力のその場磁気検出技術を開発した。
強強強磁性体(アルファ-Fe3O4)から弱い強磁性体(ベータ-Fe3O4)、最後に非磁性体(ガンマ-Fe3O4)への大気圧域におけるFe3O4のマクロ磁気遷移を観察する。
提案手法は磁気系のスピン軌道結合と磁気-超伝導の競合について検討することができる。
論文 参考訳(メタデータ) (2023-06-13T15:19:22Z) - Topological Superconductivity in Two-Dimensional Altermagnetic Metals [1.779681639954815]
D-wave altermagism と Rashba spin-orbital coupling を持つ2次元金属の超伝導に及ぼす反磁性の影響について検討した。
p波ペアリングが支配的になると、一階と二階の両方を含む多くのトポロジカル超伝導体が出現することを示す。
論文 参考訳(メタデータ) (2023-05-17T18:00:00Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
我々はSNAIL(Superconducting Asymmetric Inductive eLement)で終端する可変非線形共振器を設計した。
我々はこのKerr自由点付近に励起光子を持ち、このデバイスをトランスモン量子ビットを用いて特徴づけた。
論文 参考訳(メタデータ) (2022-10-18T09:55:58Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
キャビティ光子と強磁性スピンの励起は ハイブリッドアーキテクチャで情報交換できる
速度向上は通常、電磁キャビティの幾何学を最適化することで達成される。
強磁性体の基本周波数を設定することにより、強磁性体の幾何学も重要な役割を果たすことを示す。
論文 参考訳(メタデータ) (2022-07-08T11:28:31Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
超伝導量子回路は、主要な量子コンピューティングプラットフォームの一つである。
超伝導量子コンピューティングを実用上重要な点に進めるためには、デコヒーレンスに繋がる物質不完全性を特定し、対処することが重要である。
ここでは、テラヘルツ走査近接場光学顕微鏡を用いて、シリコン上の湿式エッチングアルミニウム共振器の局所誘電特性とキャリア濃度を調査する。
論文 参考訳(メタデータ) (2021-06-24T11:06:34Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
単結晶イットリウム鉄ガーネット(YIG)を3次元キャビティ内に構築した低損失導波管循環器を実演した。
超伝導ニオブキャビティとキラル内部モードのコヒーレントカップリングについて述べる。
また、この系の有効非エルミート力学とその有効非相互固有値についても実験的に検討する。
論文 参考訳(メタデータ) (2021-06-21T17:34:02Z) - AC susceptometry of 2D van der Waals magnets enabled by the coherent
control of quantum sensors [4.103177660092151]
我々は,NV中心のスピン沈降をコヒーレントに制御し,2次元強磁性体の超感度心磁率測定を行う。
極薄CrBr3では,領域壁の移動性が向上し,数百キロヘルツを超える周波数の減少が最小限であることを示す。
我々の技術は、ナノスケールの広帯域スピントロニクス材料の多機能acおよびdc磁気特性にNV磁気メトリーを拡張した。
論文 参考訳(メタデータ) (2021-05-17T17:28:46Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
局所周波数制御による8つの超伝導トランスモン量子ビットからなるメタマテリアルを実験的に検討した。
極性バンドギャップの出現とともに,超・亜ラジカル状態の形成を観察する。
この研究の回路は、1ビットと2ビットの実験を、完全な量子メタマテリアルへと拡張する。
論文 参考訳(メタデータ) (2020-06-05T09:27:53Z) - Dissipation-based Quantum Sensing of Magnons with a Superconducting
Qubit [0.2770822269241974]
磁性結晶の静磁モードにおける定常マグノン集団の量子センシングを実験的に実証した。
このプロトコルは,マグノン数に比例してクビットコヒーレンスを減少させる磁歪モードのゆらぎによる偏差として,散逸に基づいている。
論文 参考訳(メタデータ) (2020-05-19T07:01:25Z) - Ultralow mechanical damping with Meissner-levitated ferromagnetic
microparticles [0.0]
I型超伝導体上に浮遊するマイクロマグネットは低周波・低温で非常に低減衰であることを示す。
この結果から,超感度磁気センサの開発への道が開けられ,磁気メトリーや重力計への応用が期待できる。
論文 参考訳(メタデータ) (2019-12-27T17:30:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。