WHAT, WHEN, and HOW to Ground: Designing User Persona-Aware
Conversational Agents for Engaging Dialogue
- URL: http://arxiv.org/abs/2306.03361v3
- Date: Mon, 3 Jul 2023 22:44:12 GMT
- Title: WHAT, WHEN, and HOW to Ground: Designing User Persona-Aware
Conversational Agents for Engaging Dialogue
- Authors: Deuksin Kwon, Sunwoo Lee, Ki Hyun Kim, Seojin Lee, Taeyoon Kim, Eric
Davis
- Abstract summary: We present a method for building a personalized open-domain dialogue system to address the WWH problem for natural response generation in a commercial setting.
The proposed approach involves weighted dataset blending, negative persona information augmentation methods, and the design of personalized conversation datasets.
Our work effectively balances dialogue fluency and tendency to ground, while also introducing a response-type label to improve the controllability and explainability of the grounded responses.
- Score: 4.328280329592151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a method for building a personalized open-domain dialogue
system to address the WWH (WHAT, WHEN, and HOW) problem for natural response
generation in a commercial setting, where personalized dialogue responses are
heavily interleaved with casual response turns. The proposed approach involves
weighted dataset blending, negative persona information augmentation methods,
and the design of personalized conversation datasets to address the challenges
of WWH in personalized, open-domain dialogue systems. Our work effectively
balances dialogue fluency and tendency to ground, while also introducing a
response-type label to improve the controllability and explainability of the
grounded responses. The combination of these methods leads to more fluent
conversations, as evidenced by subjective human evaluations as well as
objective evaluations.
Related papers
- PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
Mixed-initiative dialogue tasks involve repeated exchanges of information and conversational control.
Agents gain control by generating responses that follow particular dialogue intents or strategies, prescribed by a policy planner.
Standard approach has been fine-tuning pre-trained language models to perform generation conditioned on these intents.
We instead prompt large language models as a drop-in replacement to fine-tuning on conditional generation.
arXiv Detail & Related papers (2023-05-06T23:11:25Z) - Target-Guided Dialogue Response Generation Using Commonsense and Data
Augmentation [32.764356638437214]
We introduce a new technique for target-guided response generation.
We also propose techniques to re-purpose existing dialogue datasets for target-guided generation.
Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.
arXiv Detail & Related papers (2022-05-19T04:01:40Z) - Less is More: Learning to Refine Dialogue History for Personalized
Dialogue Generation [57.73547958927826]
We propose to refine the user dialogue history on a large scale, based on which we can handle more dialogue history and obtain more accurate persona information.
Specifically, we design an MSP model which consists of three personal information refiners and a personalized response generator.
arXiv Detail & Related papers (2022-04-18T02:02:56Z) - Learning to Predict Persona Information forDialogue Personalization
without Explicit Persona Description [10.17868476063421]
We propose a novel approach that learns to predict persona information based on the dialogue history to personalize the dialogue agent.
Experimental results on the PersonaChat dataset show that the proposed method can improve the consistency of generated responses.
A trained persona prediction model can be successfully transferred to other datasets and help generate more relevant responses.
arXiv Detail & Related papers (2021-11-30T03:19:24Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Saying No is An Art: Contextualized Fallback Responses for Unanswerable
Dialogue Queries [3.593955557310285]
Most dialogue systems rely on hybrid approaches for generating a set of ranked responses.
We design a neural approach which generates responses which are contextually aware with the user query.
Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs.
arXiv Detail & Related papers (2020-12-03T12:34:22Z) - Is this Dialogue Coherent? Learning from Dialogue Acts and Entities [82.44143808977209]
We create the Switchboard Coherence (SWBD-Coh) corpus, a dataset of human-human spoken dialogues annotated with turn coherence ratings.
Our statistical analysis of the corpus indicates how turn coherence perception is affected by patterns of distribution of entities.
We find that models combining both DA and entity information yield the best performances both for response selection and turn coherence rating.
arXiv Detail & Related papers (2020-06-17T21:02:40Z) - Weakly-Supervised Neural Response Selection from an Ensemble of
Task-Specialised Dialogue Agents [11.21333474984984]
We model the problem of selecting the best response from a set of responses generated by a heterogeneous set of dialogue agents.
The proposed method is trained to predict a coherent set of responses within a single conversation, considering its own predictions via a curriculum training mechanism.
arXiv Detail & Related papers (2020-05-06T18:40:26Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.