論文の概要: TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision
- arxiv url: http://arxiv.org/abs/2306.03377v2
- Date: Mon, 1 Apr 2024 11:55:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 13:41:51.143374
- Title: TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision
- Title(参考訳): TextFormer: 混合スーパービジョンを備えたクエリベースのエンドツーエンドテキストスポッター
- Authors: Yukun Zhai, Xiaoqiang Zhang, Xiameng Qin, Sanyuan Zhao, Xingping Dong, Jianbing Shen,
- Abstract要約: Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
- 参考スコア(独自算出の注目度): 61.186488081379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end text spotting is a vital computer vision task that aims to integrate scene text detection and recognition into a unified framework. Typical methods heavily rely on Region-of-Interest (RoI) operations to extract local features and complex post-processing steps to produce final predictions. To address these limitations, we propose TextFormer, a query-based end-to-end text spotter with Transformer architecture. Specifically, using query embedding per text instance, TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling. It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing without sacrificing flexibility or simplicity. Additionally, we design an Adaptive Global aGgregation (AGG) module to transfer global features into sequential features for reading arbitrarily-shaped texts, which overcomes the sub-optimization problem of RoI operations. Furthermore, potential corpus information is utilized from weak annotations to full labels through mixed supervision, further improving text detection and end-to-end text spotting results. Extensive experiments on various bilingual (i.e., English and Chinese) benchmarks demonstrate the superiority of our method. Especially on TDA-ReCTS dataset, TextFormer surpasses the state-of-the-art method in terms of 1-NED by 13.2%.
- Abstract(参考訳): エンド・ツー・エンドのテキストスポッティングは、シーンテキストの検出と認識を統一されたフレームワークに統合することを目的とした、重要なコンピュータビジョンタスクである。
典型的な手法は、ローカルな特徴や複雑な後処理ステップを抽出して最終的な予測を生成するために、Rerea-of-Interest(RoI)操作に大きく依存する。
この制限に対処するため,Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
具体的には、テキストインスタンス毎のクエリ埋め込みを使用して、TextFormerはイメージエンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識ブランチの相互訓練と最適化を可能にし、柔軟性や単純さを犠牲にすることなく、より深い機能共有を実現する。
さらに,任意の字型テキストを読むためにグローバルな特徴を逐次的特徴に伝達するAdaptive Global aGgregation (AGG) モジュールを設計し,RoI操作のサブ最適化問題を克服する。
さらに、潜在的なコーパス情報は、弱いアノテーションから完全なラベルへの混合監視を通じて利用され、さらにテキスト検出とエンドツーエンドのテキストスポッティング結果が改善される。
様々なバイリンガル(英語と中国語)のベンチマークに関する大規模な実験は、我々の手法の優位性を示している。
特にTDA-ReCTSデータセットでは、TextFormerは最先端のメソッドを1-NEDで13.2%上回っている。
関連論文リスト
- Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
Detect Any Text"は、シーンテキストの検出、レイアウト分析、ドキュメントページの検出を結合的なエンドツーエンドモデルに統合する高度なパラダイムである。
DATにおける重要なイノベーションは、テキストインスタンスの表現学習を大幅に強化する、粒度横断型アテンションモジュールである。
テストによると、DATは様々なテキスト関連ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-05-30T07:25:23Z) - Text Grouping Adapter: Adapting Pre-trained Text Detector for Layout Analysis [52.34110239735265]
本稿では,事前学習したテキスト検出装置のレイアウト解析を学習するためのモジュールであるText Grouping Adapter (TGA)を提案する。
我々の総合的な実験は、凍結した事前学習モデルであっても、TGAを様々な事前学習されたテキスト検出器やテキストスポッターに組み込むことで、より優れたレイアウト解析性能が得られることを示した。
論文 参考訳(メタデータ) (2024-05-13T05:48:35Z) - ESTextSpotter: Towards Better Scene Text Spotting with Explicit Synergy
in Transformer [88.61312640540902]
明示的な構文に基づくテキストスポッティング変換フレームワーク(ESTextSpotter)を紹介する。
本モデルは,1つのデコーダ内におけるテキスト検出と認識のための識別的,インタラクティブな特徴をモデル化することにより,明示的な相乗効果を実現する。
実験結果から,本モデルが従来の最先端手法よりも有意に優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-08-20T03:22:23Z) - SwinTextSpotter: Scene Text Spotting via Better Synergy between Text
Detection and Text Recognition [73.61592015908353]
本稿では,SwinTextSpotter と呼ばれるシーンテキストスポッティングフレームワークを提案する。
動的頭部を検出器とするトランスを用いて、2つのタスクを新しい認識変換機構で統一する。
この設計は、追加の修正モジュールも文字レベルのアノテーションも必要としない簡潔なフレームワークをもたらす。
論文 参考訳(メタデータ) (2022-03-19T01:14:42Z) - Learning Semantic-Aligned Feature Representation for Text-based Person
Search [8.56017285139081]
テキストに基づく人物検索のためのセマンティック・アライン・埋め込み手法を提案する。
特徴アライメントは、意味的に整った視覚的特徴とテキスト的特徴を自動的に学習することで達成される。
CUHK-PEDESおよびFlickr30Kデータセットによる実験結果から,本手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-12-13T14:54:38Z) - Attention-based Feature Decomposition-Reconstruction Network for Scene
Text Detection [20.85468268945721]
シーンテキスト検出のための注意に基づく特徴分解再構成ネットワークを提案する。
我々は文脈情報と低レベル特徴を用いてセグメンテーションに基づくテキスト検出の性能を向上させる。
2つの公開ベンチマークデータセットを用いて実験を行い,提案手法が最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2021-11-29T06:15:25Z) - Text Perceptron: Towards End-to-End Arbitrary-Shaped Text Spotting [49.768327669098674]
テキストパーセプトロン(Text Perceptron)という,エンドツーエンドのトレーニング可能なテキストスポッティング手法を提案する。
まず、テキスト読解順序と境界情報を学ぶ効率的なセグメンテーションベースのテキスト検出器を用いる。
次に、検出された特徴領域を正規形態に変換するために、新しい形状変換モジュール(STM)を設計する。
論文 参考訳(メタデータ) (2020-02-17T08:07:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。