論文の概要: A Unified Framework to Super-Resolve Face Images of Varied Low
Resolutions
- arxiv url: http://arxiv.org/abs/2306.03380v1
- Date: Tue, 6 Jun 2023 03:40:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 17:34:02.581067
- Title: A Unified Framework to Super-Resolve Face Images of Varied Low
Resolutions
- Title(参考訳): 低解像度の超解像のための統一的枠組み
- Authors: Qiuyu Peng, Zifei Jiang, Yan Huang and Jingliang Peng
- Abstract要約: 本稿では,3つのアンカーオートエンコーダ,1つの特徴量回帰器,最終画像デコーダからなるニューラルネットワークアーキテクチャを提案する。
提案アルゴリズムは,1つのフレームワークを用いて,多種多様な低入力解像度に対して,頑健かつ最先端な性能を実現する。
- 参考スコア(独自算出の注目度): 8.23841568422868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existing face image super-resolution (FSR) algorithms usually train a
specific model for a specific low input resolution for optimal results. By
contrast, we explore in this work a unified framework that is trained once and
then used to super-resolve input face images of varied low resolutions. For
that purpose, we propose a novel neural network architecture that is composed
of three anchor auto-encoders, one feature weight regressor and a final image
decoder. The three anchor auto-encoders are meant for optimal FSR for three
pre-defined low input resolutions, or named anchor resolutions, respectively.
An input face image of an arbitrary low resolution is firstly up-scaled to the
target resolution by bi-cubic interpolation and then fed to the three
auto-encoders in parallel. The three encoded anchor features are then fused
with weights determined by the feature weight regressor. At last, the fused
feature is sent to the final image decoder to derive the super-resolution
result. As shown by experiments, the proposed algorithm achieves robust and
state-of-the-art performance over a wide range of low input resolutions by a
single framework. Code and models will be made available after the publication
of this work.
- Abstract(参考訳): 既存の顔画像超解像アルゴリズム(FSR)は通常、最適な結果を得るために特定の低入力解像度の特定のモデルを訓練する。
これとは対照的に,我々はこの作業において,一度トレーニングした上で,さまざまな低解像度の入力面イメージをスーパーレゾリューションするために使用される統一フレームワークを探求する。
そこで本研究では,3つのアンカーオートエンコーダと1つの特徴重回帰器,最終画像デコーダからなるニューラルネットワークアーキテクチャを提案する。
3つのアンカーオートエンコーダは、3つの事前定義された低入力解像度または名前付きアンカー解像度に対して最適なFSRを意図している。
任意の低解像度の入力顔画像は、まず2キュービック補間により目標解像度にアップスケールされ、3つのオートエンコーダに並列に供給される。
3つのエンコードされたアンカー特徴は、特徴量レグレッサーによって決定される重みで融合される。
最終的に、融合された機能は最終画像デコーダに送信され、スーパーレゾリューション結果が導出される。
実験により示すように,提案アルゴリズムは1つのフレームワークを用いて,幅広い低入力解像度に対して頑健かつ最先端な性能を実現する。
コードとモデルは、この作品の公開後に利用可能になる。
関連論文リスト
- Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder [29.924160271522354]
超解像度(SR)と画像生成はコンピュータビジョンにおいて重要なタスクであり、現実世界のアプリケーションで広く採用されている。
しかし、既存のほとんどの手法は、固定スケールの倍率でのみ画像を生成し、過度なスムーシングやアーティファクトに悩まされている。
最も関連する研究は、インプリシット神経表現(INR)をデノナイズ拡散モデルに適用し、連続分解能で多種多様で高品質なSR結果を得た。
任意のスケールで入力画像の超解像やランダムノイズから生成できる新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-15T12:45:40Z) - FNOSeg3D: Resolution-Robust 3D Image Segmentation with Fourier Neural
Operator [4.48473804240016]
フーリエニューラル演算子(FNO)に基づく画像解像度のトレーニングに頑健な3次元セグメンテーションモデルFNOSeg3Dを導入する。
BraTS'19データセットでテストすると、モデルパラメータの1%未満の他のテストモデルよりも、画像解像度のトレーニングに優れた堅牢性を達成した。
論文 参考訳(メタデータ) (2023-10-05T19:58:36Z) - OPE-SR: Orthogonal Position Encoding for Designing a Parameter-free
Upsampling Module in Arbitrary-scale Image Super-Resolution [11.74426147465809]
インプリシット・ニューラル表現(INR)は、任意のスケールの画像超解像に対する一般的なアプローチである。
我々は、任意のスケールの画像超解像のためにINRベースのアップサンプリングモジュールを置き換えるOPE-Upscaleモジュールを提案する。
論文 参考訳(メタデータ) (2023-03-02T09:26:14Z) - LSR: A Light-Weight Super-Resolution Method [36.14816868964436]
LSRは、補間された低分解能画像(ILR)と高分解能画像(HR)の間の残像を自己監督フレームワークを用いて予測する。
1)教師なし学習により対象画素の近傍にリッチで多様化した表現プールを生成すること,2)教師なし学習により下層の超解像タスクに最も関係のある表現プールからサブセットを選択すること,3)回帰によって対象画素の残差を予測すること,の3つのモジュールから構成される。
論文 参考訳(メタデータ) (2023-02-27T09:02:35Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - InfinityGAN: Towards Infinite-Resolution Image Synthesis [92.40782797030977]
任意の解像度画像を生成するinfinityganを提案する。
少ない計算資源でパッチバイパッチをシームレスに訓練し、推論する方法を示す。
論文 参考訳(メタデータ) (2021-04-08T17:59:30Z) - 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos [107.36352212367179]
本稿では,解像度認識ネットワーク,自己スーパービジョン損失,コントラスト学習スキームからなるrsc-netを提案する。
提案手法は1つのモデルで異なる解像度で3次元物体のポーズと形状を学習できる。
低解像度映像を扱うRSC-Netを拡張し、低解像度入力からテクスチャ化された3D歩行者の再構築に適用します。
論文 参考訳(メタデータ) (2021-03-11T06:52:12Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
本稿では,基本特徴と回復特徴を別々に抽出する二分岐畳み込みニューラルネットワークを提案する。
特徴抽出ステップを2つのタスク非依存ストリームに分解することで、デュアルブランチモデルがトレーニングプロセスを容易にすることができる。
論文 参考訳(メタデータ) (2020-03-02T13:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。