論文の概要: Efficient Anomaly Detection with Budget Annotation Using Semi-Supervised
Residual Transformer
- arxiv url: http://arxiv.org/abs/2306.03492v1
- Date: Tue, 6 Jun 2023 08:19:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 16:44:28.422297
- Title: Efficient Anomaly Detection with Budget Annotation Using Semi-Supervised
Residual Transformer
- Title(参考訳): 半監督残差変換器を用いた予算アノテーションを用いた効率的な異常検出
- Authors: Hanxi Li, Jingqi Wu, Hao Chen, Mingwen Wang, Chunhua Shen
- Abstract要約: 異常検出は、通常、訓練中に通常のサンプルのみが見られ、検出器は飛行中の異常を検出する必要があるため、難しい。
最近提案されたディープラーニングベースのアプローチは、この問題を緩和する可能性があるが、実世界の応用のための産業レベルの異常検知器を得るには、まだまだ長い道のりがある。
- 参考スコア(独自算出の注目度): 71.12751395582518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly Detection is challenging as usually only the normal samples are seen
during training and the detector needs to discover anomalies on-the-fly. The
recently proposed deep-learning-based approaches could somehow alleviate the
problem but there is still a long way to go in obtaining an industrial-class
anomaly detector for real-world applications. On the other hand, in some
particular AD tasks, a few anomalous samples are labeled manually for achieving
higher accuracy. However, this performance gain is at the cost of considerable
annotation efforts, which can be intractable in many practical scenarios.
In this work, the above two problems are addressed in a unified framework.
Firstly, inspired by the success of the patch-matching-based AD algorithms, we
train a sliding vision transformer over the residuals generated by a novel
position-constrained patch-matching. Secondly, the conventional pixel-wise
segmentation problem is cast into a block-wise classification problem. Thus the
sliding transformer can attain even higher accuracy with much less annotation
labor. Thirdly, to further reduce the labeling cost, we propose to label the
anomalous regions using only bounding boxes. The unlabeled regions caused by
the weak labels are effectively exploited using a highly-customized
semi-supervised learning scheme equipped with two novel data augmentation
methods. The proposed method outperforms all the state-of-the-art approaches
using all the evaluation metrics in both the unsupervised and supervised
scenarios. On the popular MVTec-AD dataset, our SemiREST algorithm obtains the
Average Precision (AP) of 81.2% in the unsupervised condition and 84.4% AP for
supervised anomaly detection. Surprisingly, with the bounding-box-based
semi-supervisions, SemiREST still outperforms the SOTA methods with full
supervision (83.8% AP) on MVTec-AD.
- Abstract(参考訳): 異常検出は、通常、訓練中に通常のサンプルのみが見られ、検出器は飛行中の異常を検出する必要があるため、難しい。
最近提案されたディープラーニングベースのアプローチは、この問題を緩和する可能性があるが、実世界のアプリケーションのための産業レベルの異常検知器を得るには、まだまだ長い道のりがある。
一方、特定のADタスクでは、精度を高めるためにいくつかの異常サンプルを手動でラベル付けする。
しかし、このパフォーマンス向上にはかなりのアノテーションの努力が費やされているため、多くの実践的なシナリオでは難解である。
この作業では、上記の2つの問題は統一されたフレームワークで解決される。
まず、パッチマッチングベースのADアルゴリズムの成功に触発されて、新しい位置制約パッチマッチングによって生成される残差に対して、スライディングビジョン変換器を訓練する。
第二に、従来の画素ワイドセグメンテーション問題をブロックワイド分類問題に投入する。
これにより、スライディング変圧器は、アノテーションの手間をはるかに少なくして、さらに高い精度が得られる。
第3に,ラベル付けコストをさらに削減するために,境界ボックスのみを用いて異常領域をラベル付けすることを提案する。
弱ラベルによる未ラベル領域を、2つの新しいデータ拡張手法を備えた高度にカスタマイズされた半教師付き学習スキームを用いて効果的に活用する。
提案手法は,教師なしシナリオと教師なしシナリオの両方において,すべての評価指標を用いて,最先端手法を上回っている。
一般的なmvtec-adデータセットでは、semirestアルゴリズムは教師なし条件で81.2%、教師なし異常検出で84.4%の平均精度(ap)を得る。
意外なことに、バウンディングボックスベースのセミスーパービジョンでは、SemiRESTはMVTec-AD上で完全な監視(83.8%AP)でSOTAメソッドよりも優れています。
関連論文リスト
- Looking for Tiny Defects via Forward-Backward Feature Transfer [12.442574943138794]
そこで本研究では,従来の高解像度画像と地中トラスマスクの手法を評価する新しいベンチマークを提案する。
私たちのベンチマークには、欠陥サイズに関する堅牢性をキャプチャするメトリクスが含まれています。
提案手法は,欠陥サイズに対する高いロバスト性,高速動作,最先端セグメンテーション性能を特徴とする。
論文 参考訳(メタデータ) (2024-07-04T17:59:26Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - REB: Reducing Biases in Representation for Industrial Anomaly Detection [16.550844182346314]
本稿では,ドメインバイアスを考慮した表現におけるReduceing Biases (REB)を提案する。
また,特徴空間における局所密度バイアスを低減し,効果的な異常検出を実現するために,局所密度KNN(LDKNN)を提案する。
提案したREB法は,Vgg11やResnet18などの小さなバックボーンネットワークを用いて,広く使用されているMVTec AD上で99.5%のIm.AUROCを実現する。
論文 参考訳(メタデータ) (2023-08-24T05:32:29Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Align-DETR: Improving DETR with Simple IoU-aware BCE loss [32.13866392998818]
そこで本稿では, 誤り訂正問題を定量的に評価するために, ベストレグレッションされたサンプルをリコールする計量法を提案する。
提案した損失であるIA-BCEは、DeTRのトレーニングをガイドし、分類スコアとローカライゼーション精度の強い相関関係を構築する。
クエリのスパーシリティによって引き起こされるサンプル品質の劇的な低下を克服するために,プライマリサンプル重み付け機構を導入する。
論文 参考訳(メタデータ) (2023-04-15T10:24:51Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
我々は、識別器モデルが入力の特定の特徴に対してより敏感であることを示唆する新しいパーセプトロンバイアスの仮定を導入し、過度な問題を引き起こした。
DMの拡散分解過程 (DDP) が非対称の新たな形態として機能し, 入力を高め, 過信問題を緩和するのに適していることを示す。
CIFAR10, CIFAR100, ImageNetによる実験により, 提案手法がSOTA手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-11-21T08:45:08Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
弱教師付き有色物体検出(WSOD)は,画像レベルのアノテーションを用いた有色度モデルの開発を目的としている。
擬似ラベルとネットワーク予測の相互校正ループを明確に設定し,自己校正学習戦略を提案する。
十分に整合したアノテーションを持つはるかに小さなデータセットであっても、モデルがより優れたパフォーマンスと一般化性を達成するのに役立ちます。
論文 参考訳(メタデータ) (2021-09-04T02:45:22Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。