論文の概要: Efficient Anomaly Detection with Budget Annotation Using Semi-Supervised Residual Transformer
- arxiv url: http://arxiv.org/abs/2306.03492v3
- Date: Tue, 28 May 2024 08:22:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 04:36:37.238411
- Title: Efficient Anomaly Detection with Budget Annotation Using Semi-Supervised Residual Transformer
- Title(参考訳): 半監督残差変換器を用いた予算アノテーションを用いた効率的な異常検出
- Authors: Hanxi Li, Jingqi Wu, Hao Chen, Mingwen Wang, Chunhua Shen,
- Abstract要約: 異常検出は、通常、訓練中に通常のサンプルのみが見られ、検出器は飛行中の異常を検出する必要があるため、難しい。
最近提案されたディープラーニングベースのアプローチは、この問題を緩和する可能性があるが、実世界の応用のための産業レベルの異常検知器を得るには、まだまだ長い道のりがある。
- 参考スコア(独自算出の注目度): 46.396242832775314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly Detection is challenging as usually only the normal samples are seen during training and the detector needs to discover anomalies on-the-fly. The recently proposed deep-learning-based approaches could somehow alleviate the problem but there is still a long way to go in obtaining an industrial-class anomaly detector for real-world applications. On the other hand, in some particular AD tasks, a few anomalous samples are labeled manually for achieving higher accuracy. However, this performance gain is at the cost of considerable annotation efforts, which can be intractable in many practical scenarios. In this work, the above two problems are addressed in a unified framework. Firstly, inspired by the success of the patch-matching-based AD algorithms, we train a sliding vision transformer over the residuals generated by a novel position-constrained patch-matching. Secondly, the conventional pixel-wise segmentation problem is cast into a block-wise classification problem. Thus the sliding transformer can attain even higher accuracy with much less annotation labor. Thirdly, to further reduce the labeling cost, we propose to label the anomalous regions using only bounding boxes. The unlabeled regions caused by the weak labels are effectively exploited using a highly-customized semi-supervised learning scheme equipped with two novel data augmentation methods. The proposed method outperforms all the state-of-the-art approaches using all the evaluation metrics in both the unsupervised and supervised scenarios. On the popular MVTec-AD dataset, our SemiREST algorithm obtains the Average Precision (AP) of 81.2% in the unsupervised condition and 84.4% AP for supervised anomaly detection. Surprisingly, with the bounding-box-based semi-supervisions, SemiREST still outperforms the SOTA methods with full supervision (83.8% AP) on MVTec-AD.
- Abstract(参考訳): 異常検出は、通常、訓練中に通常のサンプルのみが見られ、検出器は飛行中の異常を検出する必要があるため、難しい。
最近提案されたディープラーニングベースのアプローチは、この問題を緩和する可能性があるが、実世界のアプリケーションのための産業レベルの異常検知器を得るには、まだまだ長い道のりがある。
一方、特定のADタスクでは、精度を高めるために、いくつかの異常サンプルを手動でラベル付けする。
しかし、このパフォーマンス向上には相当なアノテーションの努力が費やされているため、多くの実践的なシナリオでは難解である。
この研究では、上記の2つの問題を統一されたフレームワークで解決する。
まず、パッチマッチングベースのADアルゴリズムの成功に触発されて、新しい位置制約パッチマッチングによって生成される残差に対して、スライディング・ビジョン・トランスフォーマーを訓練する。
第二に、従来の画素ワイドセグメンテーション問題をブロックワイド分類問題に投入する。
これにより、スライディング変圧器は、アノテーションの手間をはるかに少なくして、さらに高い精度が得られる。
第3に,ラベル付けコストをさらに削減するために,境界ボックスのみを用いて異常領域をラベル付けすることを提案する。
弱ラベルによる未ラベル領域を、2つの新しいデータ拡張手法を備えた高度にカスタマイズされた半教師付き学習スキームを用いて効果的に活用する。
提案手法は、教師なしシナリオと教師なしシナリオの両方において、すべての評価指標を用いて、最先端のアプローチよりも優れている。
一般的なMVTec-ADデータセットでは、SemiRESTアルゴリズムは、教師なし状態における平均精度(AP)が81.2%、教師付き異常検出のためのAPが84.4%である。
意外なことに、バウンディングボックスベースのセミスーパービジョンでは、SemiRESTはMVTec-AD上で完全な監視(83.8%AP)でSOTAメソッドよりも優れています。
関連論文リスト
- Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
異常検出(AD)は、正規性の学習モデルに適合しない観察を識別する重要なタスクである。
本稿では, 入力空間における説明不能な観測として, 説明可能性を用いた新しいAD手法を提案する。
当社のアプローチでは,複数のベンチマークにまたがる新たな最先端性を確立し,さまざまな異常な型を扱う。
論文 参考訳(メタデータ) (2023-10-01T21:24:05Z) - REB: Reducing Biases in Representation for Industrial Anomaly Detection [16.550844182346314]
本稿では,ドメインバイアスを考慮した表現におけるReduceing Biases (REB)を提案する。
また,特徴空間における局所密度バイアスを低減し,効果的な異常検出を実現するために,局所密度KNN(LDKNN)を提案する。
提案したREB法は,Vgg11やResnet18などの小さなバックボーンネットワークを用いて,広く使用されているMVTec AD上で99.5%のIm.AUROCを実現する。
論文 参考訳(メタデータ) (2023-08-24T05:32:29Z) - Unsupervised Domain Adaptive Salient Object Detection Through
Uncertainty-Aware Pseudo-Label Learning [104.00026716576546]
そこで本研究では,手動のアノテーションを使わずに,自然に高いピクセルラベル品質を有する合成・クリーンなラベルから,サリエンスを学習することを提案する。
提案手法は,複数のベンチマークデータセット上で,既存の最先端の深層教師なしSOD法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-26T16:03:55Z) - Mean-Shifted Contrastive Loss for Anomaly Detection [34.97652735163338]
そこで本研究では,集中損失法とコントラスト損失法の両方の障害モードを克服できる新たな損失関数を提案する。
私たちの改善は、$textitMean-Shifted Contrastive Loss$に基づいて、新しい異常検出アプローチをもたらします。
提案手法は,ROC-AUC$9.5%を含む複数のベンチマークにおいて,最先端の異常検出性能を実現する。
論文 参考訳(メタデータ) (2021-06-07T17:58:03Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的とする。
本稿では,教師なしキーポイント検出のためのレグレッシブドメイン適応(RegDA)法を提案する。
提案手法は,異なるデータセット上のPCKにおいて,8%から11%の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2021-03-10T16:45:22Z) - Combining GANs and AutoEncoders for Efficient Anomaly Detection [0.0]
CBiGANは画像の異常検出のための新しい方法である。
我々のモデルは、かなり優れたモデリング能力と再構成整合性を示す。
実験により, 提案手法はBiGANの定式化性能を大きなマージンで向上することを示した。
論文 参考訳(メタデータ) (2020-11-16T17:07:55Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - Uncertainty-Aware Consistency Regularization for Cross-Domain Semantic
Segmentation [63.75774438196315]
Unsupervised Domain adapt (UDA) は、未ラベルのデータのみを持つ新しいターゲットドメインにソースドメインの既存のモデルを適用することを目的としている。
既存のほとんどの手法は、エラーを起こしやすい識別器ネットワークまたは不合理な教師モデルから生じる顕著な負の伝達に悩まされている。
ドメイン間セマンティックセグメンテーションのための不確実性を考慮した整合性正規化手法を提案する。
論文 参考訳(メタデータ) (2020-04-19T15:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。