論文の概要: Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers
- arxiv url: http://arxiv.org/abs/2306.03492v6
- Date: Wed, 15 Jan 2025 15:26:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:50:26.282110
- Title: Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers
- Title(参考訳): 弱スーパービジョン残差変圧器を用いた産業異常検出と位置決め
- Authors: Hanxi Li, Jingqi Wu, Deyin Liu, Lin Wu, Hao Chen, Mingwen Wang, Chunhua Shen,
- Abstract要約: Weakly-supervised RESidual Transformer (WeakREST) という新しいフレームワークを導入し,高い異常検出精度を実現する。
画素単位の異常局所化タスクをブロック単位の分類問題に再構成する。
弱いラベルと残差に基づく表現との相互作用を処理できるResMixMatchアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 44.344548601242444
- License:
- Abstract: Recent advancements in industrial anomaly detection (AD) have demonstrated that incorporating a small number of anomalous samples during training can significantly enhance accuracy. However, this improvement often comes at the cost of extensive annotation efforts, which are impractical for many real-world applications. In this paper, we introduce a novel framework, Weak}ly-supervised RESidual Transformer (WeakREST), designed to achieve high anomaly detection accuracy while minimizing the reliance on manual annotations. First, we reformulate the pixel-wise anomaly localization task into a block-wise classification problem. Second, we introduce a residual-based feature representation called Positional Fast Anomaly Residuals (PosFAR) which captures anomalous patterns more effectively. To leverage this feature, we adapt the Swin Transformer for enhanced anomaly detection and localization. Additionally, we propose a weak annotation approach, utilizing bounding boxes and image tags to define anomalous regions. This approach establishes a semi-supervised learning context that reduces the dependency on precise pixel-level labels. To further improve the learning process, we develop a novel ResMixMatch algorithm, capable of handling the interplay between weak labels and residual-based representations. On the benchmark dataset MVTec-AD, our method achieves an Average Precision (AP) of $83.0\%$, surpassing the previous best result of $82.7\%$ in the unsupervised setting. In the supervised AD setting, WeakREST attains an AP of $87.6\%$, outperforming the previous best of $86.0\%$. Notably, even when using weaker annotations such as bounding boxes, WeakREST exceeds the performance of leading methods relying on pixel-wise supervision, achieving an AP of $87.1\%$ compared to the prior best of $86.0\%$ on MVTec-AD.
- Abstract(参考訳): 産業異常検出(AD)の最近の進歩は、トレーニング中に少数の異常サンプルを組み込むことで、精度が著しく向上することを示した。
しかし、この改善は、多くの現実世界のアプリケーションにとって実用的でない広範囲なアノテーションの努力のコストが伴うことが多い。
本稿では,手動アノテーションへの依存を最小限に抑えつつ,高い異常検出精度を実現するための新しいフレームワーク,Weak} 教師付きresidual Transformer(WeakREST)を紹介する。
まず,画素単位の異常な局所化タスクをブロック単位の分類問題に再構成する。
第2に,ポジショナル高速異常残差(PosFAR)と呼ばれる残差に基づく特徴表現を導入し,異常パターンをより効果的に捉えた。
この機能を活用するために,Swin Transformerを改良した異常検出と局所化に適用する。
さらに,境界ボックスと画像タグを用いて異常領域を定義する弱いアノテーション手法を提案する。
このアプローチは、正確なピクセルレベルのラベルへの依存を減らす半教師付き学習コンテキストを確立する。
学習過程をさらに改善するため,弱いラベルと残差に基づく表現との相互作用を処理できる新しいResMixMatchアルゴリズムを開発した。
ベンチマークデータセット MVTec-AD では,平均精度 (AP) が 83.0 %$ となり,教師なし設定では 82.7 %$ を突破した。
監督されたAD設定では、WeakRESTは87.6\%$のAPを獲得し、以前の最高値である86.0\%$のAPを上回った。
特に、バウンディングボックスのような弱いアノテーションを使用する場合であっても、WeakRESTはピクセル単位の監視に依存するリードメソッドのパフォーマンスを上回り、以前のMVTec-ADの最高値である8.6.0\%よりも8.1\%のAPを達成している。
関連論文リスト
- Looking for Tiny Defects via Forward-Backward Feature Transfer [12.442574943138794]
そこで本研究では,従来の高解像度画像と地中トラスマスクの手法を評価する新しいベンチマークを提案する。
私たちのベンチマークには、欠陥サイズに関する堅牢性をキャプチャするメトリクスが含まれています。
提案手法は,欠陥サイズに対する高いロバスト性,高速動作,最先端セグメンテーション性能を特徴とする。
論文 参考訳(メタデータ) (2024-07-04T17:59:26Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - REB: Reducing Biases in Representation for Industrial Anomaly Detection [16.550844182346314]
本稿では,ドメインバイアスを考慮した表現におけるReduceing Biases (REB)を提案する。
また,特徴空間における局所密度バイアスを低減し,効果的な異常検出を実現するために,局所密度KNN(LDKNN)を提案する。
提案したREB法は,Vgg11やResnet18などの小さなバックボーンネットワークを用いて,広く使用されているMVTec AD上で99.5%のIm.AUROCを実現する。
論文 参考訳(メタデータ) (2023-08-24T05:32:29Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Align-DETR: Improving DETR with Simple IoU-aware BCE loss [32.13866392998818]
そこで本稿では, 誤り訂正問題を定量的に評価するために, ベストレグレッションされたサンプルをリコールする計量法を提案する。
提案した損失であるIA-BCEは、DeTRのトレーニングをガイドし、分類スコアとローカライゼーション精度の強い相関関係を構築する。
クエリのスパーシリティによって引き起こされるサンプル品質の劇的な低下を克服するために,プライマリサンプル重み付け機構を導入する。
論文 参考訳(メタデータ) (2023-04-15T10:24:51Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
我々は、識別器モデルが入力の特定の特徴に対してより敏感であることを示唆する新しいパーセプトロンバイアスの仮定を導入し、過度な問題を引き起こした。
DMの拡散分解過程 (DDP) が非対称の新たな形態として機能し, 入力を高め, 過信問題を緩和するのに適していることを示す。
CIFAR10, CIFAR100, ImageNetによる実験により, 提案手法がSOTA手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-11-21T08:45:08Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
弱教師付き有色物体検出(WSOD)は,画像レベルのアノテーションを用いた有色度モデルの開発を目的としている。
擬似ラベルとネットワーク予測の相互校正ループを明確に設定し,自己校正学習戦略を提案する。
十分に整合したアノテーションを持つはるかに小さなデータセットであっても、モデルがより優れたパフォーマンスと一般化性を達成するのに役立ちます。
論文 参考訳(メタデータ) (2021-09-04T02:45:22Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。