RLtools: A Fast, Portable Deep Reinforcement Learning Library for Continuous Control
- URL: http://arxiv.org/abs/2306.03530v4
- Date: Tue, 19 Nov 2024 17:41:00 GMT
- Title: RLtools: A Fast, Portable Deep Reinforcement Learning Library for Continuous Control
- Authors: Jonas Eschmann, Dario Albani, Giuseppe Loianno,
- Abstract summary: Deep Reinforcement Learning (RL) can yield capable agents and control policies in several domains but is commonly plagued by prohibitively long training times.
We present RLtools, a dependency-free, header-only, pure C++ library for deep supervised and reinforcement learning.
- Score: 7.259696592534715
- License:
- Abstract: Deep Reinforcement Learning (RL) can yield capable agents and control policies in several domains but is commonly plagued by prohibitively long training times. Additionally, in the case of continuous control problems, the applicability of learned policies on real-world embedded devices is limited due to the lack of real-time guarantees and portability of existing libraries. To address these challenges, we present RLtools, a dependency-free, header-only, pure C++ library for deep supervised and reinforcement learning. Its novel architecture allows RLtools to be used on a wide variety of platforms, from HPC clusters over workstations and laptops to smartphones, smartwatches, and microcontrollers. Specifically, due to the tight integration of the RL algorithms with simulation environments, RLtools can solve popular RL problems up to 76 times faster than other popular RL frameworks. We also benchmark the inference on a diverse set of microcontrollers and show that in most cases our optimized implementation is by far the fastest. Finally, RLtools enables the first-ever demonstration of training a deep RL algorithm directly on a microcontroller, giving rise to the field of TinyRL. The source code as well as documentation and live demos are available through our project page at https://rl.tools.
Related papers
- XuanCe: A Comprehensive and Unified Deep Reinforcement Learning Library [18.603206638756056]
XuanCe is a comprehensive and unified deep reinforcement learning (DRL) library.
XuanCe offers a wide range of functionalities, including over 40 classical DRL and multi-agent DRL algorithms.
XuanCe is open-source and can be accessed at https://agi-brain.com/agi-brain/xuance.git.
arXiv Detail & Related papers (2023-12-25T14:45:39Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
We present a novel abstraction on the dataflows of RL training, which unifies diverse RL training applications into a general framework.
We develop a scalable, efficient, and distributed RL system called ReaLly scalableRL, which allows efficient and massively parallelized training.
SRL is the first in the academic community to perform RL experiments at a large scale with over 15k CPU cores.
arXiv Detail & Related papers (2023-06-29T05:16:25Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - LCRL: Certified Policy Synthesis via Logically-Constrained Reinforcement
Learning [78.2286146954051]
LCRL implements model-free Reinforcement Learning (RL) algorithms over unknown Decision Processes (MDPs)
We present case studies to demonstrate the applicability, ease of use, scalability, and performance of LCRL.
arXiv Detail & Related papers (2022-09-21T13:21:00Z) - ElegantRL-Podracer: Scalable and Elastic Library for Cloud-Native Deep
Reinforcement Learning [141.58588761593955]
We present a library ElegantRL-podracer for cloud-native deep reinforcement learning.
It efficiently supports millions of cores to carry out massively parallel training at multiple levels.
At a low-level, each pod simulates agent-environment interactions in parallel by fully utilizing nearly 7,000 GPU cores in a single GPU.
arXiv Detail & Related papers (2021-12-11T06:31:21Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL)
By replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code.
We show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.
arXiv Detail & Related papers (2021-06-04T03:08:43Z) - RL-Scope: Cross-Stack Profiling for Deep Reinforcement Learning
Workloads [4.575381867242508]
We propose RL-Scope, a cross-stack profiler that scopes low-level CPU/GPU resource usage to high-level algorithmic operations.
We demonstrate RL-Scope's utility through in-depth case studies.
arXiv Detail & Related papers (2021-02-08T15:42:48Z) - RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning [108.9599280270704]
We propose a benchmark called RL Unplugged to evaluate and compare offline RL methods.
RL Unplugged includes data from a diverse range of domains including games and simulated motor control problems.
We will release data for all our tasks and open-source all algorithms presented in this paper.
arXiv Detail & Related papers (2020-06-24T17:14:51Z) - MushroomRL: Simplifying Reinforcement Learning Research [60.70556446270147]
MushroomRL is an open-source Python library developed to simplify the process of implementing and running Reinforcement Learning (RL) experiments.
Compared to other available libraries, MushroomRL has been created with the purpose of providing a comprehensive and flexible framework to minimize the effort in implementing and testing novel RL methodologies.
arXiv Detail & Related papers (2020-01-04T17:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.