論文の概要: An Open Patch Generator based Fingerprint Presentation Attack Detection
using Generative Adversarial Network
- arxiv url: http://arxiv.org/abs/2306.03577v1
- Date: Tue, 6 Jun 2023 10:52:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 15:53:27.272686
- Title: An Open Patch Generator based Fingerprint Presentation Attack Detection
using Generative Adversarial Network
- Title(参考訳): 生成型adversarial networkを用いたオープンパッチ生成に基づく指紋提示攻撃検出
- Authors: Anuj Rai, Ashutosh Anshul, Ashwini Jha, Prayag Jain, Ramprakash
Sharma, Somnath Dey
- Abstract要約: 自動指紋認識システム(AFRS)のセンサに本物の指紋の偽造を提示することによる脅威の一つに、提示攻撃(PA)または偽造(spoofing)がある。
本稿では、GAN(Generative Adversarial Network)を用いて、提案したOpen Patch Generator(OPG)から生成されたスプーフサンプルを用いてデータセットを増強するCNNベースの手法を提案する。
96.20%、94.97%、92.90%の精度は、それぞれLivDetプロトコルのシナリオの下で、LivDet 2015、2017、2019データベースで達成されている。
- 参考スコア(独自算出の注目度): 3.5558308387389626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The low-cost, user-friendly, and convenient nature of Automatic Fingerprint
Recognition Systems (AFRS) makes them suitable for a wide range of
applications. This spreading use of AFRS also makes them vulnerable to various
security threats. Presentation Attack (PA) or spoofing is one of the threats
which is caused by presenting a spoof of a genuine fingerprint to the sensor of
AFRS. Fingerprint Presentation Attack Detection (FPAD) is a countermeasure
intended to protect AFRS against fake or spoof fingerprints created using
various fabrication materials. In this paper, we have proposed a Convolutional
Neural Network (CNN) based technique that uses a Generative Adversarial Network
(GAN) to augment the dataset with spoof samples generated from the proposed
Open Patch Generator (OPG). This OPG is capable of generating realistic
fingerprint samples which have no resemblance to the existing spoof fingerprint
samples generated with other materials. The augmented dataset is fed to the
DenseNet classifier which helps in increasing the performance of the
Presentation Attack Detection (PAD) module for the various real-world attacks
possible with unknown spoof materials. Experimental evaluations of the proposed
approach are carried out on the Liveness Detection (LivDet) 2015, 2017, and
2019 competition databases. An overall accuracy of 96.20\%, 94.97\%, and
92.90\% has been achieved on the LivDet 2015, 2017, and 2019 databases,
respectively under the LivDet protocol scenarios. The performance of the
proposed PAD model is also validated in the cross-material and cross-sensor
attack paradigm which further exhibits its capability to be used under
real-world attack scenarios.
- Abstract(参考訳): 低コストでユーザフレンドリで便利な自動指紋認識システム(AFRS)は、幅広い用途に適している。
AFRSの普及により、さまざまなセキュリティ脅威に対して脆弱になる。
プレゼンテーションアタック(PA)またはスプーイング(spoofing)は、本物の指紋のスプーフをAFRSのセンサーに提示することによる脅威の1つである。
FPAD(フィンガープリント・プレゼンテーション・アタック・ディテクト・ディテクト)は、AFRSを様々な製造材料で作られた偽の指紋や偽の指紋から守るための対策である。
本稿では、GAN(Generative Adversarial Network)を用いて、提案したOpen Patch Generator(OPG)から生成されたスプーフサンプルを用いてデータセットを増大させる畳み込みニューラルネットワーク(CNN)に基づく手法を提案する。
このOPGは、他の材料で生成された既存のスプーフ指紋サンプルと似ていない現実的な指紋サンプルを生成することができる。
拡張データセットはDenseNet分類器に送られ、未知のスプーフ材料で可能な様々な実世界の攻撃に対して、PAD(Presentation Detection Detection)モジュールのパフォーマンスを高めるのに役立つ。
提案手法の実験的な評価は、liveness detection (livdet) 2015, 2017, 2019のコンペティションデータベース上で実施された。
livdet 2015、2017、2019のデータベースでは、96.20\%、94.97\%、92.90\%の全体的な精度がそれぞれlivdetプロトコルのシナリオで達成されている。
提案したPADモデルの性能は、現実世界の攻撃シナリオでの使用能力を示すクロスマテリアルおよびクロスセンサー攻撃パラダイムでも検証されている。
関連論文リスト
- Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - A Universal Anti-Spoofing Approach for Contactless Fingerprint Biometric
Systems [0.0]
接触のない指紋に対する普遍的な提示攻撃検出法を提案する。
ライブフィンガー写真からStyleGANを用いて合成非接触指紋を生成し,それらを統合して半教師付きResNet-18モデルを訓練した。
両損失関数のバランスをとるために,Arcface と Center の損失を組み合わせた新しい結合損失関数を導入した。
論文 参考訳(メタデータ) (2023-10-23T15:46:47Z) - DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection [1.9573380763700712]
ユーザの指紋を同意の有無にかかわらず偽造することにより、提示攻撃を行うことができる。
本稿では,プレゼンテーションアタックを検出するために,深層CNNと手作り特徴の動的アンサンブルを提案する。
提案手法をLiveness Detection Competitionからベンチマークデータベース上で検証した。
論文 参考訳(メタデータ) (2023-08-19T13:46:49Z) - EXPRESSNET: An Explainable Residual Slim Network for Fingerprint
Presentation Attack Detection [3.6296396308298795]
プレゼンテーション攻撃は、自動指紋認識システムのセキュリティを維持する上で難しい問題である。
本稿では,入力指紋サンプルの視覚的特徴を表現して提示攻撃を検出する,説明可能な残留スリムネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-16T12:29:50Z) - MoSFPAD: An end-to-end Ensemble of MobileNet and Support Vector
Classifier for Fingerprint Presentation Attack Detection [2.733700237741334]
本稿では,指紋攻撃を検知する新しいエンドツーエンドモデルを提案する。
提案モデルでは,MobileNetを特徴抽出器として,Support Vectorを分類器として組み込んだ。
提案モデルの性能を最先端の手法と比較する。
論文 参考訳(メタデータ) (2023-03-02T18:27:48Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
指紋スプーフ検出の進歩に対する大きな制限は、公開可能な大規模な指紋スプーフデータセットの欠如である。
この研究は、これらのアルゴリズムに十分なデータを供給する際に、合成指紋(ライブ指紋とスプーフ指紋の両方)の有用性を実証することを目的としている。
論文 参考訳(メタデータ) (2022-04-13T16:27:27Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
フェース・アンチ・スプーフィング(FAS)は、顔認識システムが提示攻撃を防ぐ上で重要な役割を担っている。
既存のフェース・アンチ・スプーフィング・データセットは、アイデンティティと重要なばらつきが不十分なため、多様性を欠いている。
我々は「生成によるアンチ・スプーフィング」によりこの問題に対処するデュアル・スポット・ディアンタングメント・ジェネレーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:36:59Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
異常検出に基づくスプーフ攻撃検出は、顔提示攻撃検出の最近の進歩である。
本稿では,異常検出に基づくスプーフ攻撃検出のためのディープラーニングソリューションを提案する。
提案手法はCNNの表現学習能力の恩恵を受け,fPADタスクの優れた特徴を学習する。
論文 参考訳(メタデータ) (2020-07-11T21:20:55Z) - Fingerprint Presentation Attack Detection: A Sensor and Material
Agnostic Approach [44.46178415547532]
クロスマテリアルとクロスセンサの一般化を改良した,堅牢なプレゼンテーションアタック検出(PAD)ソリューションを提案する。
具体的には,指紋スプーフ検出とクロスマテリアルスプーフ一般化を併用して,指紋スプーフ検出を訓練したCNNベースのアーキテクチャを構築した。
また,DNN(Deep Neural Network)にARL(Adversarial Expression Learning)を組み込んで,PADのセンサおよび材料不変表現を学習する。
論文 参考訳(メタデータ) (2020-04-06T19:03:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。