Entropic covariance models
- URL: http://arxiv.org/abs/2306.03590v3
- Date: Tue, 7 May 2024 21:47:12 GMT
- Title: Entropic covariance models
- Authors: Piotr Zwiernik,
- Abstract summary: We present a general framework for linear restrictions on different transformations of the covariance matrix.
Our proposed estimation method solves a convex problem and yields an $M$-estimator.
- Score: 0.7614628596146602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In covariance matrix estimation, one of the challenges lies in finding a suitable model and an efficient estimation method. Two commonly used modelling approaches in the literature involve imposing linear restrictions on the covariance matrix or its inverse. Another approach considers linear restrictions on the matrix logarithm of the covariance matrix. In this paper, we present a general framework for linear restrictions on different transformations of the covariance matrix, including the mentioned examples. Our proposed estimation method solves a convex problem and yields an $M$-estimator, allowing for relatively straightforward asymptotic (in general) and finite sample analysis (in the Gaussian case). In particular, we recover standard $\sqrt{n/d}$ rates, where $d$ is the dimension of the underlying model. Our geometric insights allow to extend various recent results in covariance matrix modelling. This includes providing unrestricted parametrizations of the space of correlation matrices, which is alternative to a recent result utilizing the matrix logarithm.
Related papers
- Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
We investigate efficient learning from higher-order graph convolution and learning directly from adjacency matrix for node classification.
We show that the resulting model lead to new graphs and residual scaling parameter.
We demonstrate that the proposed methods obtain improved accuracy for node-classification of non-homophilous parameters.
arXiv Detail & Related papers (2022-09-12T04:46:55Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
This paper uses techniques from Random Matrix Theory to find the ideal training-testing data split for a simple linear regression.
It defines "ideal" as satisfying the integrity metric, i.e. the empirical model error is the actual measurement noise.
This paper is the first to solve for the training and test size for any model in a way that is truly optimal.
arXiv Detail & Related papers (2021-12-11T13:18:33Z) - Near optimal sample complexity for matrix and tensor normal models via
geodesic convexity [5.191641077435773]
We show nonasymptotic bounds for the error achieved by the maximum likelihood estimator (MLE) in several natural metrics.
In the same regimes as our sample complexity bounds, we show that an iterative procedure to compute the MLE known as the flip-flop algorithm converges linearly with high probability.
arXiv Detail & Related papers (2021-10-14T17:47:00Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Information-Theoretic Limits for the Matrix Tensor Product [8.206394018475708]
This paper studies a high-dimensional inference problem involving the matrix tensor product of random matrices.
On the technical side, this paper introduces some new techniques for the analysis of high-dimensional matrix-preserving signals.
arXiv Detail & Related papers (2020-05-22T17:03:48Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
We propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data.
We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation.
We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
arXiv Detail & Related papers (2020-04-11T02:15:26Z) - Asymptotic errors for convex penalized linear regression beyond Gaussian
matrices [23.15629681360836]
We consider the problem of learning a coefficient vector $x_0$ in $RN$ from noisy linear observations.
We provide a rigorous derivation of an explicit formula for the mean squared error.
We show that our predictions agree remarkably well with numerics even for very moderate sizes.
arXiv Detail & Related papers (2020-02-11T13:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.