Covariance Estimation for Matrix-valued Data
- URL: http://arxiv.org/abs/2004.05281v2
- Date: Mon, 18 Apr 2022 19:39:50 GMT
- Title: Covariance Estimation for Matrix-valued Data
- Authors: Yichi Zhang, Weining Shen, Dehan Kong
- Abstract summary: We propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data.
We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation.
We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
- Score: 9.739753590548796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Covariance estimation for matrix-valued data has received an increasing
interest in applications. Unlike previous works that rely heavily on matrix
normal distribution assumption and the requirement of fixed matrix size, we
propose a class of distribution-free regularized covariance estimation methods
for high-dimensional matrix data under a separability condition and a bandable
covariance structure. Under these conditions, the original covariance matrix is
decomposed into a Kronecker product of two bandable small covariance matrices
representing the variability over row and column directions. We formulate a
unified framework for estimating bandable covariance, and introduce an
efficient algorithm based on rank one unconstrained Kronecker product
approximation. The convergence rates of the proposed estimators are
established, and the derived minimax lower bound shows our proposed estimator
is rate-optimal under certain divergence regimes of matrix size. We further
introduce a class of robust covariance estimators and provide theoretical
guarantees to deal with heavy-tailed data. We demonstrate the superior
finite-sample performance of our methods using simulations and real
applications from a gridded temperature anomalies dataset and a S&P 500 stock
data analysis.
Related papers
- A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
arXiv Detail & Related papers (2024-05-30T15:01:18Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold.
We develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget.
Evaluations of our approach using data from physical applications demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.
arXiv Detail & Related papers (2023-01-31T16:33:46Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - On confidence intervals for precision matrices and the
eigendecomposition of covariance matrices [20.20416580970697]
This paper tackles the challenge of computing confidence bounds on the individual entries of eigenvectors of a covariance matrix of fixed dimension.
We derive a method to bound the entries of the inverse covariance matrix, the so-called precision matrix.
As an application of these results, we demonstrate a new statistical test, which allows us to test for non-zero values of the precision matrix.
arXiv Detail & Related papers (2022-08-25T10:12:53Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
We consider an adversarially-trained version of the nonnegative matrix factorization.
In our formulation, an attacker adds an arbitrary matrix of bounded norm to the given data matrix.
We design efficient algorithms inspired by adversarial training to optimize for dictionary and coefficient matrices.
arXiv Detail & Related papers (2021-04-10T13:13:17Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Effective Data-aware Covariance Estimator from Compressed Data [63.16042585506435]
We propose a data-aware weighted sampling based covariance matrix estimator, namely DACE, which can provide an unbiased covariance matrix estimation.
We conduct extensive experiments on both synthetic and real-world datasets to demonstrate the superior performance of our DACE.
arXiv Detail & Related papers (2020-10-10T10:10:28Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Fitting Laplacian Regularized Stratified Gaussian Models [0.0]
We consider the problem of jointly estimating multiple related zero-mean Gaussian distributions from data.
We propose a distributed method that scales to large problems, and illustrate the efficacy of the method with examples in finance, radar signal processing, and weather forecasting.
arXiv Detail & Related papers (2020-05-04T18:00:59Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Sparse Covariance Estimation in Logit Mixture Models [0.0]
This paper introduces a new data-driven methodology for estimating sparse covariance matrices of the random coefficients in logit mixture models.
Our objective is to find optimal subsets of correlated coefficients for which we estimate covariances.
arXiv Detail & Related papers (2020-01-14T20:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.