論文の概要: Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability
- arxiv url: http://arxiv.org/abs/2306.03715v1
- Date: Tue, 6 Jun 2023 14:23:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 15:03:44.411855
- Title: Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability
- Title(参考訳): unleashing mask: 内在的な分散検出機能を探求する
- Authors: Jianing Zhu, Hengzhuang Li, Jiangchao Yao, Tongliang Liu, Jianliang
Xu, Bo Han
- Abstract要約: Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
- 参考スコア(独自算出の注目度): 70.72426887518517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection is an indispensable aspect of secure AI
when deploying machine learning models in real-world applications. Previous
paradigms either explore better scoring functions or utilize the knowledge of
outliers to equip the models with the ability of OOD detection. However, few of
them pay attention to the intrinsic OOD detection capability of the given
model. In this work, we generally discover the existence of an intermediate
stage of a model trained on in-distribution (ID) data having higher OOD
detection performance than that of its final stage across different settings,
and further identify one critical data-level attribution to be learning with
the atypical samples. Based on such insights, we propose a novel method,
Unleashing Mask, which aims to restore the OOD discriminative capabilities of
the well-trained model with ID data. Our method utilizes a mask to figure out
the memorized atypical samples, and then finetune the model or prune it with
the introduced mask to forget them. Extensive experiments and analysis
demonstrate the effectiveness of our method. The code is available at:
https://github.com/tmlr-group/Unleashing-Mask.
- Abstract(参考訳): Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
以前のパラダイムは、より良いスコアリング関数を探索するか、またはOOD検出能力を備えたモデルにアウトリーチの知識を利用する。
しかし、そのモデル固有のOOD検出能力に注意を払っているものはほとんどない。
本研究は一般的に,OOD検出性能が最終段階よりも高い分布(ID)データに基づいて訓練されたモデルの中間段階の存在を発見し,さらに非定型サンプルを用いて学習する重要なデータレベルの属性を同定する。
このような知見に基づいて,IDデータを用いたよく訓練されたモデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
本手法の有効性を示す実験と分析を行った。
コードはhttps://github.com/tmlr-group/unleashing-maskで入手できる。
関連論文リスト
- Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - Forte : Finding Outliers with Representation Typicality Estimation [0.14061979259370275]
生成モデルは、それを訓練する実際のデータとほぼ区別できない合成データを生成することができる。
OOD検出に関する最近の研究は、生成モデルの可能性が最適なOOD検出器であるという疑念を提起している。
本稿では,表現学習と,多様体推定に基づく情報的要約統計を利用した新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T08:26:37Z) - Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
堅牢な機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
拡散モデルの生成能力とCLIPの強力な特徴抽出能力を活用する新しいOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-16T23:55:25Z) - Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
アウト・オブ・ディストリビューション(OOD)検出は、異常サンプルを特定しようとする機械学習において重要なタスクである。
従来、教師なし手法はOOD検出に深い生成モデルを用いていた。
本稿では,単一モデルが多様なタスクに対してOOD検出を行うことができるかどうかを考察する。
論文 参考訳(メタデータ) (2024-05-20T08:54:03Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-Distribution (OOD) 検出は、よく訓練された深層モデルから抽出された表現に基づいてOODデータを識別することを目的としている。
本稿では,透かしという一般的な手法を提案する。
我々は,元データの特徴に重畳される統一パターンを学習し,ウォーターマーキング後にモデルの検出能力が大きく向上する。
論文 参考訳(メタデータ) (2022-10-27T06:12:32Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z) - Robust Out-of-Distribution Detection on Deep Probabilistic Generative
Models [0.06372261626436676]
アウト・オブ・ディストリビューション(OOD)検出は機械学習システムにおいて重要な課題である。
深い確率的生成モデルは、データサンプルの可能性を推定することによって、OODの検出を容易にする。
本稿では,外周露光を伴わない新しい検出指標を提案する。
論文 参考訳(メタデータ) (2021-06-15T06:36:10Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。