Deductive Verification of Chain-of-Thought Reasoning
- URL: http://arxiv.org/abs/2306.03872v3
- Date: Tue, 3 Oct 2023 19:48:22 GMT
- Title: Deductive Verification of Chain-of-Thought Reasoning
- Authors: Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland
Memisevic and Hao Su
- Abstract summary: Large Language Models (LLMs) benefit from Chain-of-Thought prompting in performing various reasoning tasks.
While CoT allows models to produce more comprehensive reasoning processes, its emphasis on intermediate reasoning steps can inadvertently introduce hallucinations and accumulated errors.
We propose Natural Program, a natural language-based deductive reasoning format.
- Score: 22.79166959432764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) significantly benefit from Chain-of-Thought
(CoT) prompting in performing various reasoning tasks. While CoT allows models
to produce more comprehensive reasoning processes, its emphasis on intermediate
reasoning steps can inadvertently introduce hallucinations and accumulated
errors, thereby limiting models' ability to solve complex reasoning tasks.
Inspired by how humans engage in careful and meticulous deductive logical
reasoning processes to solve tasks, we seek to enable language models to
perform explicit and rigorous deductive reasoning, and also ensure the
trustworthiness of their reasoning process through self-verification. However,
directly verifying the validity of an entire deductive reasoning process is
challenging, even with advanced models like ChatGPT. In light of this, we
propose to decompose a reasoning verification process into a series of
step-by-step subprocesses, each only receiving their necessary context and
premises. To facilitate this procedure, we propose Natural Program, a natural
language-based deductive reasoning format. Our approach enables models to
generate precise reasoning steps where subsequent steps are more rigorously
grounded on prior steps. It also empowers language models to carry out
reasoning self-verification in a step-by-step manner. By integrating this
verification process into each deductive reasoning stage, we significantly
enhance the rigor and trustfulness of generated reasoning steps. Along this
process, we also improve the answer correctness on complex reasoning tasks.
Code will be released at https://github.com/lz1oceani/verify_cot.
Related papers
- Contrastive Chain-of-Thought Prompting [74.10511560147293]
We propose contrastive chain of thought to enhance language model reasoning.
Compared to the conventional chain of thought, our approach provides both valid and invalid reasoning demonstrations.
Our experiments on reasoning benchmarks demonstrate that contrastive chain of thought can serve as a general enhancement of chain-of-thought prompting.
arXiv Detail & Related papers (2023-11-15T18:54:01Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - Implicit Chain of Thought Reasoning via Knowledge Distillation [58.80851216530288]
Instead of explicitly producing the chain of thought reasoning steps, we use the language model's internal hidden states to perform implicit reasoning.
We find that this approach enables solving tasks previously not solvable without explicit chain-of-thought, at a speed comparable to no chain-of-thought.
arXiv Detail & Related papers (2023-11-02T17:59:49Z) - Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement [92.61557711360652]
Language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks.
We conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement.
We reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
arXiv Detail & Related papers (2023-10-12T17:51:10Z) - Question Decomposition Improves the Faithfulness of Model-Generated
Reasoning [23.34325378824462]
Large language models (LLMs) are difficult to verify the correctness and safety of their behavior.
One approach is to prompt LLMs to externalize their reasoning, by having them generate step-by-step reasoning as they answer a question.
This approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case.
Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT.
arXiv Detail & Related papers (2023-07-17T00:54:10Z) - Boosting Language Models Reasoning with Chain-of-Knowledge Prompting [18.326858925174605]
Chain-of-Knowledge (CoK) prompting aims at eliciting explicit pieces of knowledge evidence in the form of structure triple.
Benefiting from CoK, we additionally introduce a F2-Verification method to estimate the reliability of the reasoning chains.
Extensive experiments demonstrate that our method can further improve the performance of commonsense, factual, symbolic, and arithmetic reasoning tasks.
arXiv Detail & Related papers (2023-06-10T12:42:36Z) - Abductive Commonsense Reasoning Exploiting Mutually Exclusive
Explanations [118.0818807474809]
Abductive reasoning aims to find plausible explanations for an event.
Existing approaches for abductive reasoning in natural language processing often rely on manually generated annotations for supervision.
This work proposes an approach for abductive commonsense reasoning that exploits the fact that only a subset of explanations is correct for a given context.
arXiv Detail & Related papers (2023-05-24T01:35:10Z) - Learning to Reason With Relational Abstractions [65.89553417442049]
We study how to build stronger reasoning capability in language models using the idea of relational abstractions.
We find that models that are supplied with such sequences as prompts can solve tasks with a significantly higher accuracy.
arXiv Detail & Related papers (2022-10-06T00:27:50Z) - Language Models Are Greedy Reasoners: A Systematic Formal Analysis of
Chain-of-Thought [10.524051272257614]
Large language models (LLMs) have shown remarkable reasoning capabilities given chain-of-thought prompts.
We present a new synthetic question-answering dataset called PrOntoQA, where each example is generated as a synthetic world model.
This allows us to parse the generated chain-of-thought into symbolic proofs for formal analysis.
arXiv Detail & Related papers (2022-10-03T21:34:32Z) - Faithful Reasoning Using Large Language Models [12.132449274592668]
We show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem.
Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs.
We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy.
arXiv Detail & Related papers (2022-08-30T13:44:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.