Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2502.13260v1
- Date: Tue, 18 Feb 2025 20:04:51 GMT
- Title: Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models
- Authors: Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen Luo, Jing Huang, Zhen Li, Suhang Wang, Yue Xing, Jiliang Tang, Qi He,
- Abstract summary: Chain-of-Thought (CoT) reasoning has significantly enhanced the performance of large language models (LLMs)
We propose a method to identify critical reasoning steps using perplexity as a measure of their importance.
- Score: 56.37421741507468
- License:
- Abstract: Chain-of-Thought (CoT) reasoning, which breaks down complex tasks into intermediate reasoning steps, has significantly enhanced the performance of large language models (LLMs) on challenging tasks. However, the detailed reasoning process in CoT often incurs long generation times and high computational costs, partly due to the inclusion of unnecessary steps. To address this, we propose a method to identify critical reasoning steps using perplexity as a measure of their importance: a step is deemed critical if its removal causes a significant increase in perplexity. Our method enables models to focus solely on generating these critical steps. This can be achieved through two approaches: refining demonstration examples in few-shot CoT or fine-tuning the model using selected examples that include only critical steps. Comprehensive experiments validate the effectiveness of our method, which achieves a better balance between the reasoning accuracy and efficiency of CoT.
Related papers
- Coarse-to-Fine Process Reward Modeling for Mathematical Reasoning [11.15613673478208]
The Process Reward Model (PRM) plays a crucial role in mathematical reasoning tasks, requiring high-quality supervised process data.
We observe that reasoning steps generated by Large Language Models (LLMs) often fail to exhibit strictly incremental information, leading to redundancy.
We propose CFPRM, a simple yet effective coarse-to-fine strategy for detecting redundant steps.
arXiv Detail & Related papers (2025-01-23T12:44:45Z) - Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback [94.25162866972077]
Step-KTO is a training framework that combines process-level and outcome-level binary feedback.
Our experiments show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps.
arXiv Detail & Related papers (2025-01-18T15:38:03Z) - Rethinking Chain-of-Thought from the Perspective of Self-Training [10.722453877596998]
Chain-of-thought (CoT) reasoning has emerged as an effective approach for activating latent capabilities in LLMs.
We propose a novel CoT framework to improve reasoning performance.
Our framework integrates two key components: (i) a task-specific prompt module that optimize the initial reasoning process, and (ii) an adaptive reasoning module that dynamically refines the reasoning process.
arXiv Detail & Related papers (2024-12-14T13:12:50Z) - Self-Harmonized Chain of Thought [8.540320749424172]
Chain-of-thought (CoT) prompting has demonstrated the capacity of large language models to perform complex reasoning through intermediate steps.
We propose ECHO, a novel method that unifies diverse solution paths into a consistent and effective reasoning pattern.
arXiv Detail & Related papers (2024-09-06T06:57:04Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - Beyond Imitation: Learning Key Reasoning Steps from Dual Chain-of-Thoughts in Reasoning Distillation [24.272384832200522]
We propose mistaktextbfE-textbfDriven key reasontextbfIng step distillatextbfTion (textbfEDIT)
We design prompts to generate dual CoTs data with similar reasoning paths but divergent conclusions.
Experiments validate the effectiveness of EDIT across both in-domain and out-of-domain benchmark reasoning datasets.
arXiv Detail & Related papers (2024-05-30T06:32:11Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks.
We propose a hierarchical generation scheme to encourage a more structural generation of chain-of-thought steps.
Our approach requires a negligible increase in trainable parameters (0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme.
arXiv Detail & Related papers (2023-10-09T13:29:37Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
arXiv Detail & Related papers (2023-08-31T14:31:48Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.