論文の概要: Triggering Multi-Hop Reasoning for Question Answering in Language Models
using Soft Prompts and Random Walks
- arxiv url: http://arxiv.org/abs/2306.04009v1
- Date: Tue, 6 Jun 2023 20:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 17:07:34.757316
- Title: Triggering Multi-Hop Reasoning for Question Answering in Language Models
using Soft Prompts and Random Walks
- Title(参考訳): ソフトプロンプトとランダムウォークを用いた言語モデルの質問応答のためのマルチホップ推論
- Authors: Kanishka Misra and Cicero Nogueira dos Santos and Siamak Shakeri
- Abstract要約: 構造化知識グラフ上のランダムウォークを頼りにすることで,この制限を改善する手法を提案する。
具体的には、ソフトプロンプトを使用して、複数のホップ質問をランダムなウォークパスにマッピングすることで、LMのコード化された知識をチェーン化する。
2 つの T5 LM にメソッドを適用することで、2 ホップ推論を必要とする問題に答える上で、標準チューニングアプローチよりも大幅に改善されたことを示す。
- 参考スコア(独自算出の注目度): 1.5254598796939924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite readily memorizing world knowledge about entities, pre-trained
language models (LMs) struggle to compose together two or more facts to perform
multi-hop reasoning in question-answering tasks. In this work, we propose
techniques that improve upon this limitation by relying on random walks over
structured knowledge graphs. Specifically, we use soft prompts to guide LMs to
chain together their encoded knowledge by learning to map multi-hop questions
to random walk paths that lead to the answer. Applying our methods on two T5
LMs shows substantial improvements over standard tuning approaches in answering
questions that require 2-hop reasoning.
- Abstract(参考訳): 実体に関する世界的知識を暗記しているにもかかわらず、事前訓練された言語モデル(LM)は、2つ以上の事実をまとめて質問応答タスクでマルチホップ推論を行うのに苦労している。
本研究では,構造化知識グラフ上のランダムウォークに依存することにより,この制限を改善する手法を提案する。
具体的には,マルチホップ質問をランダムなウォークパスにマップすることで,lmsにエンコードされた知識の連鎖を誘導するソフトプロンプトを用いる。
2 つの T5 LM にメソッドを適用することで、2 ホップ推論を必要とする質問に対する標準チューニングアプローチよりも大幅に改善されたことを示す。
関連論文リスト
- LLM-Based Multi-Hop Question Answering with Knowledge Graph Integration in Evolving Environments [35.3938477255058]
本稿では,大規模言語モデル(GMeLLo)のためのグラフメモリベースの編集について述べる。
GMeLLoは、知識グラフの明示的な知識表現と、大規模言語モデルの言語的柔軟性を融合する。
以上の結果から,GMeLLoはマルチホップ質問応答ベンチマークであるMQuAKEにおいて,最先端の知識編集手法をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-08-28T16:15:45Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - PokeMQA: Programmable knowledge editing for Multi-hop Question Answering [46.80110170981976]
マルチホップ質問応答(MQA)は、マシンの理解と推論能力を評価する上で難しいタスクの1つである。
マルチホップ質問回答(MQA)のためのフレームワーク、Programmable Knowledge Editorを提案する。
具体的には、LLMの動作を外部のコンフリクト信号に応じて変調する訓練可能なスコープ検出器と相互作用しながら、知識強化されたマルチホップ質問を分解するよう促す。
論文 参考訳(メタデータ) (2023-12-23T08:32:13Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - Memory Injections: Correcting Multi-Hop Reasoning Failures during
Inference in Transformer-Based Language Models [4.343604069244352]
そこで本研究では,アテンションヘッドにターゲットメモリを注入することで,マルチホップ推論失敗をピンポイントし,修正する手法を提案する。
キーアテンション層への単純で効率的で目標とするメモリインジェクションは、マルチホップタスクにおいて、所望の次のトークンの確率を最大424%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-09-11T16:39:30Z) - STREET: A Multi-Task Structured Reasoning and Explanation Benchmark [56.555662318619135]
マルチタスクとマルチドメインの自然言語推論と説明ベンチマークを統一的に導入する。
我々は、モデルが質問に答えるだけでなく、ある解の正しさを証明できる中間的な結論を生成するために、問題の前提がどのように使われているかを記述する、段階的に構造化された説明を生成することを期待している。
論文 参考訳(メタデータ) (2023-02-13T22:34:02Z) - Understanding and Improving Zero-shot Multi-hop Reasoning in Generative
Question Answering [85.79940770146557]
マルチホップ質問を複数の単一ホップ質問に分解する。
これらの対の見かけ上同一の問合せ連鎖について、QAモデルの答えに顕著な矛盾が認められる。
シングルホップの質問だけを訓練すると、モデルはマルチホップの質問に対してあまり一般化しない。
論文 参考訳(メタデータ) (2022-10-09T11:48:07Z) - Locate Then Ask: Interpretable Stepwise Reasoning for Multi-hop Question
Answering [71.49131159045811]
マルチホップ推論では、複雑な質問に答えるために複数の文書を集約する必要がある。
既存の方法は通常、マルチホップの質問を単純なシングルホップの質問に分解する。
そこで本研究では,単一ホップ支援文識別と単一ホップ質問生成の両方を組み込む,解釈可能な段階的推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-22T13:24:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。