論文の概要: An Analysis of Reader Engagement in Literary Fiction through Eye
Tracking and Linguistic Features
- arxiv url: http://arxiv.org/abs/2306.04043v1
- Date: Tue, 6 Jun 2023 22:14:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 16:57:36.889700
- Title: An Analysis of Reader Engagement in Literary Fiction through Eye
Tracking and Linguistic Features
- Title(参考訳): 視線追跡と言語特徴を用いた文学小説における読者参加の分析
- Authors: Rose Neis and Karin de Langis and Zae Myung Kim and Dongyeop Kang
- Abstract要約: 本研究は,読み手がいかに興味を抱くかを予測する上で,テキストの様々な性質の重要性について分析した。
フィクションで読者を魅了するものの理解を深めることによって、創造的な物語生成に使用されるモデルにより良い情報を与えることができる。
- 参考スコア(独自算出の注目度): 11.805980147608178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capturing readers' engagement in fiction is a challenging but important
aspect of narrative understanding. In this study, we collected 23 readers'
reactions to 2 short stories through eye tracking, sentence-level annotations,
and an overall engagement scale survey. We analyzed the significance of various
qualities of the text in predicting how engaging a reader is likely to find it.
As enjoyment of fiction is highly contextual, we also investigated individual
differences in our data. Furthering our understanding of what captivates
readers in fiction will help better inform models used in creative narrative
generation and collaborative writing tools.
- Abstract(参考訳): 読者のフィクションへの関与を捉えることは、物語理解において難しいが重要な側面である。
本研究では, 視線追跡, 文章レベルのアノテーション, エンゲージメント尺度による2つの短いストーリーに対する23人の読者の反応を収集した。
本研究は,読み手がいかに興味を抱くかを予測する上で,テキストの様々な性質の重要性を分析した。
フィクションの楽しみは極めて文脈的であるため、我々のデータにおける個人差についても検討した。
フィクションで読者を魅了するものを理解することで、創造的な物語生成や共同執筆ツールで使われるモデルをより良く知らせることができるでしょう。
関連論文リスト
- BookWorm: A Dataset for Character Description and Analysis [59.186325346763184]
本稿では,短い事実プロファイルを生成する文字記述と,詳細な解釈を提供する文字解析という2つのタスクを定義する。
本稿では,Gutenbergプロジェクトからの書籍と,人間による記述と分析のペアリングを行うBookWormデータセットを紹介する。
その結果,検索に基づくアプローチは両タスクにおいて階層的アプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-10-14T10:55:58Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
本稿では,物語の執筆を特殊エージェントが取り組んだサブタスクに分解する,物語理論に触発された世代フレームワークを提案する。
エージェントの部屋は,専門的評価者が好むストーリーをベースラインシステムより生成することを示す。
論文 参考訳(メタデータ) (2024-10-03T15:44:42Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
本稿ではストーリーテリングにおけるLLMの能力について考察し,物語の展開とプロットの進行に着目した。
本稿では,3つの談話レベルの側面から物語を分析するための新しい計算フレームワークを提案する。
談話機能の明示的な統合は、ニューラルストーリーテリングの40%以上の改善によって示されるように、ストーリーテリングを促進することができることを示す。
論文 参考訳(メタデータ) (2024-07-18T08:02:49Z) - The Detection and Understanding of Fictional Discourse [0.2900810893770134]
本稿では,架空の談話検出の課題に関連する様々な分類実験について述べる。
我々は,現代出版のフィクション,ハトヒ・トラストの歴史的フィクション,ファンフィクション,Redditの物語,民話,GPT生成の物語,およびアングロフォン世界文学など,さまざまなデータセットを活用している。
論文 参考訳(メタデータ) (2024-01-30T01:57:17Z) - Understanding Social Structures from Contemporary Literary Fiction using
Character Interaction Graph -- Half Century Chronology of Influential Bengali
Writers [2.103087897983347]
社会構造や現実世界の出来事は、しばしば現代文学に影響を及ぼす。
文字相互作用グラフを用いて、現代文化が文学の風景に与える影響について、社会的問いかけを探索する。
論文 参考訳(メタデータ) (2023-10-25T20:09:14Z) - Affective and Dynamic Beam Search for Story Generation [50.3130767805383]
面白い物語を生成するために、AffGen(Affective Story Generator)を提案する。
AffGenはDynamic Beam SizeとAffective Re rankという2つの新しいテクニックを採用している。
論文 参考訳(メタデータ) (2023-10-23T16:37:14Z) - Personality Understanding of Fictional Characters during Book Reading [81.68515671674301]
この問題に対する最初のラベル付きデータセットPersoNetを提示する。
当社の新たなアノテーション戦略では,オリジナル書籍のプロキシとして,オンライン読書アプリからユーザノートを注釈付けします。
実験と人間の研究は、データセットの構築が効率的かつ正確であることを示している。
論文 参考訳(メタデータ) (2023-05-17T12:19:11Z) - M-SENSE: Modeling Narrative Structure in Short Personal Narratives Using
Protagonist's Mental Representations [14.64546899992196]
本研究では,登場人物の心的状態の推測を解析し,物語構造の顕著な要素を自動的に検出するタスクを提案する。
本稿では,物語構造の主要な要素,特にクライマックスと解像度のマニュアルアノテーションを含む,短い個人物語のSTORIESデータセットを紹介する。
我々のモデルは、クライマックスと解像度を識別するタスクにおいて、大幅な改善を達成できる。
論文 参考訳(メタデータ) (2023-02-18T20:48:02Z) - "Let Your Characters Tell Their Story": A Dataset for Character-Centric
Narrative Understanding [31.803481510886378]
文芸作品の新しいデータセットLiSCUとその要約を、それらに現れる文字の記述と組み合わせて紹介する。
また、LiSCUにおける文字識別と文字記述生成という2つの新しいタスクについても紹介する。
これらの課題に適応した事前学習型言語モデルを用いた実験により,より優れた物語理解モデルの必要性が示された。
論文 参考訳(メタデータ) (2021-09-12T06:12:55Z) - Readability Research: An Interdisciplinary Approach [62.03595526230364]
我々は,可読性研究の包括的枠組みである可読性研究のための強固な基盤を提供することを目指している。
可読性(Readability)とは、ページから読み手への情報フローに影響を与える視覚情報設計の側面を指す。
これらのアスペクトはオンデマンドで修正可能で、読み手がテキストから処理し、意味を導き出すのが簡単になる。
論文 参考訳(メタデータ) (2021-07-20T16:52:17Z) - Modeling Social Readers: Novel Tools for Addressing Reception from
Online Book Reviews [0.0]
5つの人気小説のレビューのコーパスを使用して、小説のメインストーリーラインの読者の蒸留を研究します。
無限語彙ネットワークの研究に3つの重要な貢献をしている。
本稿では、レビューから集約された部分軌跡に基づいてイベントのコンセンサスシーケンスを生成する新しいシーケンシングアルゴリズムREV2SEQを提案する。
論文 参考訳(メタデータ) (2021-05-03T20:10:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。