Self-Adjusting Weighted Expected Improvement for Bayesian Optimization
- URL: http://arxiv.org/abs/2306.04262v3
- Date: Fri, 30 Jun 2023 13:18:39 GMT
- Title: Self-Adjusting Weighted Expected Improvement for Bayesian Optimization
- Authors: Carolin Benjamins and Elena Raponi and Anja Jankovic and Carola Doerr
and Marius Lindauer
- Abstract summary: This work focuses on the definition of the AF, whose main purpose is to balance the trade-off between exploring regions with high uncertainty and those with high promise for good solutions.
We propose Self-Adjusting Weighted Expected Improvement (SAWEI), where we let the exploration-exploitation trade-off self-adjust in a data-driven manner.
Our method exhibits a favorable any-time performance compared to handcrafted baselines and serves as a robust default choice for any problem structure.
- Score: 11.955557264002204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Optimization (BO) is a class of surrogate-based, sample-efficient
algorithms for optimizing black-box problems with small evaluation budgets. The
BO pipeline itself is highly configurable with many different design choices
regarding the initial design, surrogate model, and acquisition function (AF).
Unfortunately, our understanding of how to select suitable components for a
problem at hand is very limited. In this work, we focus on the definition of
the AF, whose main purpose is to balance the trade-off between exploring
regions with high uncertainty and those with high promise for good solutions.
We propose Self-Adjusting Weighted Expected Improvement (SAWEI), where we let
the exploration-exploitation trade-off self-adjust in a data-driven manner,
based on a convergence criterion for BO. On the noise-free black-box BBOB
functions of the COCO benchmarking platform, our method exhibits a favorable
any-time performance compared to handcrafted baselines and serves as a robust
default choice for any problem structure. The suitability of our method also
transfers to HPOBench. With SAWEI, we are a step closer to on-the-fly,
data-driven, and robust BO designs that automatically adjust their sampling
behavior to the problem at hand.
Related papers
- Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - LABCAT: Locally adaptive Bayesian optimization using principal-component-aligned trust regions [0.0]
We propose the LABCAT algorithm, which extends trust-region-based BO.
We show that the algorithm outperforms several state-of-the-art BO and other black-box optimization algorithms.
arXiv Detail & Related papers (2023-11-19T13:56:24Z) - Predictive Modeling through Hyper-Bayesian Optimization [60.586813904500595]
We propose a novel way of integrating model selection and BO for the single goal of reaching the function optima faster.
The algorithm moves back and forth between BO in the model space and BO in the function space, where the goodness of the recommended model is captured.
In addition to improved sample efficiency, the framework outputs information about the black-box function.
arXiv Detail & Related papers (2023-08-01T04:46:58Z) - Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization [37.339567743948955]
We present a novel Bayesian optimization framework specifically tailored to address the limitations of BO.
Our key contribution is a highly scalable, sample-based acquisition function that performs a non-dominated sorting of objectives.
We show that our acquisition function in combination with different Bayesian neural network surrogates is effective in data-intensive environments with a minimal number of iterations.
arXiv Detail & Related papers (2023-06-01T19:10:57Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Towards Automated Design of Bayesian Optimization via Exploratory
Landscape Analysis [11.143778114800272]
We show that a dynamic selection of the AF can benefit the BO design.
We pave a way towards AutoML-assisted, on-the-fly BO designs that adjust their behavior on a run-by-run basis.
arXiv Detail & Related papers (2022-11-17T17:15:04Z) - A General Recipe for Likelihood-free Bayesian Optimization [115.82591413062546]
We propose likelihood-free BO (LFBO) to extend BO to a broader class of models and utilities.
LFBO directly models the acquisition function without having to separately perform inference with a probabilistic surrogate model.
We show that computing the acquisition function in LFBO can be reduced to optimizing a weighted classification problem.
arXiv Detail & Related papers (2022-06-27T03:55:27Z) - Sparse Bayesian Optimization [16.867375370457438]
We present several regularization-based approaches that allow us to discover sparse and more interpretable configurations.
We propose a novel differentiable relaxation based on homotopy continuation that makes it possible to target sparsity.
We show that we are able to efficiently optimize for sparsity.
arXiv Detail & Related papers (2022-03-03T18:25:33Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Scalable Constrained Bayesian Optimization [10.820024633762596]
The global optimization of a high-dimensional black-box function under black-box constraints is a pervasive task in machine learning, control, and the scientific community.
We propose the scalable constrained Bayesian optimization (SCBO) algorithm that overcomes the above challenges and pushes the state-the-art.
arXiv Detail & Related papers (2020-02-20T01:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.