Predictive Modeling through Hyper-Bayesian Optimization
- URL: http://arxiv.org/abs/2308.00285v1
- Date: Tue, 1 Aug 2023 04:46:58 GMT
- Title: Predictive Modeling through Hyper-Bayesian Optimization
- Authors: Manisha Senadeera, Santu Rana, Sunil Gupta, Svetha Venkatesh
- Abstract summary: We propose a novel way of integrating model selection and BO for the single goal of reaching the function optima faster.
The algorithm moves back and forth between BO in the model space and BO in the function space, where the goodness of the recommended model is captured.
In addition to improved sample efficiency, the framework outputs information about the black-box function.
- Score: 60.586813904500595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model selection is an integral problem of model based optimization techniques
such as Bayesian optimization (BO). Current approaches often treat model
selection as an estimation problem, to be periodically updated with
observations coming from the optimization iterations. In this paper, we propose
an alternative way to achieve both efficiently. Specifically, we propose a
novel way of integrating model selection and BO for the single goal of reaching
the function optima faster. The algorithm moves back and forth between BO in
the model space and BO in the function space, where the goodness of the
recommended model is captured by a score function and fed back, capturing how
well the model helped convergence in the function space. The score function is
derived in such a way that it neutralizes the effect of the moving nature of
the BO in the function space, thus keeping the model selection problem
stationary. This back and forth leads to quick convergence for both model
selection and BO in the function space. In addition to improved sample
efficiency, the framework outputs information about the black-box function.
Convergence is proved, and experimental results show significant improvement
compared to standard BO.
Related papers
- Diff-BBO: Diffusion-Based Inverse Modeling for Black-Box Optimization [20.45482366024264]
Black-box optimization (BBO) aims to optimize an objective function by iteratively querying a black-box oracle in a sample-efficient way.
Recent inverse modeling approaches that map objective space to the design space with conditional diffusion models have demonstrated impressive capability in learning the data manifold.
We propose Diff-BBO, an inverse approach leveraging diffusion models for online BBO problem.
arXiv Detail & Related papers (2024-06-30T06:58:31Z) - Covariance-Adaptive Sequential Black-box Optimization for Diffusion Targeted Generation [60.41803046775034]
We show how to perform user-preferred targeted generation via diffusion models with only black-box target scores of users.
Experiments on both numerical test problems and target-guided 3D-molecule generation tasks show the superior performance of our method in achieving better target scores.
arXiv Detail & Related papers (2024-06-02T17:26:27Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Simulation Based Bayesian Optimization [0.6526824510982799]
This paper introduces Simulation Based Bayesian Optimization (SBBO) as a novel approach to optimizing acquisition functions.
SBBO allows the use of surrogate models tailored for spaces with discrete variables.
We demonstrate empirically the effectiveness of SBBO method using various choices of surrogate models.
arXiv Detail & Related papers (2024-01-19T16:56:11Z) - Towards Automated Design of Bayesian Optimization via Exploratory
Landscape Analysis [11.143778114800272]
We show that a dynamic selection of the AF can benefit the BO design.
We pave a way towards AutoML-assisted, on-the-fly BO designs that adjust their behavior on a run-by-run basis.
arXiv Detail & Related papers (2022-11-17T17:15:04Z) - A General Recipe for Likelihood-free Bayesian Optimization [115.82591413062546]
We propose likelihood-free BO (LFBO) to extend BO to a broader class of models and utilities.
LFBO directly models the acquisition function without having to separately perform inference with a probabilistic surrogate model.
We show that computing the acquisition function in LFBO can be reduced to optimizing a weighted classification problem.
arXiv Detail & Related papers (2022-06-27T03:55:27Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Scalable Combinatorial Bayesian Optimization with Tractable Statistical
models [44.25245545568633]
We study the problem of optimizing blackbox functions over Relaxation spaces (e.g., sets, sequences, trees, and graphs)
Based on recent advances in submodular relaxation, we study an approach as Parametrized Submodular (PSR) towards the goal of improving the scalability and accuracy of solving AFO problems for BOCS model.
Experiments on diverse benchmark problems show significant improvements with PSR for BOCS model.
arXiv Detail & Related papers (2020-08-18T22:56:46Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.