論文の概要: Multi-microphone Automatic Speech Segmentation in Meetings Based on
Circular Harmonics Features
- arxiv url: http://arxiv.org/abs/2306.04268v1
- Date: Wed, 7 Jun 2023 09:09:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 15:17:23.479692
- Title: Multi-microphone Automatic Speech Segmentation in Meetings Based on
Circular Harmonics Features
- Title(参考訳): 円高調波特徴に基づく会議におけるマルチマイクロホン自動音声セグメンテーション
- Authors: Th\'eo Mariotte (LAUM, LIUM), Anthony Larcher (LIUM), Silvio
Montr\'esor (LAUM), Jean-Hugh Thomas (LAUM)
- Abstract要約: 円形高調波領域(CH-DOA)の方向推定に基づく新しい空間的特徴セットを提案する。
AMIミーティングコーパスの実験では、CH-DOAは非活性化マイクロホンの場合の堅牢さを保ちながらセグメンテーションを改善することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speaker diarization is the task of answering Who spoke and when? in an audio
stream. Pipeline systems rely on speech segmentation to extract speakers'
segments and achieve robust speaker diarization. This paper proposes a common
framework to solve three segmentation tasks in the distant speech scenario:
Voice Activity Detection (VAD), Overlapped Speech Detection (OSD), and Speaker
Change Detection (SCD). In the literature, a few studies investigate the
multi-microphone distant speech scenario. In this work, we propose a new set of
spatial features based on direction-of-arrival estimations in the circular
harmonic domain (CH-DOA). These spatial features are extracted from
multi-microphone audio data and combined with standard acoustic features.
Experiments on the AMI meeting corpus show that CH-DOA can improve the
segmentation while being robust in the case of deactivated microphones.
- Abstract(参考訳): 話者ダイアリゼーションは、誰といつ答えるか?
オーディオストリームで
パイプラインシステムは、話者のセグメントを抽出し、頑健な話者ダイアリゼーションを達成するために、音声セグメンテーションに依存する。
本稿では,音声活動検出 (vad), 重畳音声検出 (osd), 話者変化検出 (scd) という, 遠隔音声シナリオにおける3つの分節化課題を解決する共通の枠組みを提案する。
文献では、複数マイクロホンの遠隔発話シナリオについていくつかの研究がなされている。
本研究では,円高調波領域(CH-DOA)の方向推定に基づく新しい空間的特徴セットを提案する。
これらの空間的特徴は、マルチマイクロフォン音声データから抽出され、標準音響特徴と組み合わせられる。
AMIミーティングコーパスの実験では、CH-DOAは非活性化マイクロホンの場合の堅牢さを保ちながらセグメンテーションを改善することができる。
関連論文リスト
- DiscreteSLU: A Large Language Model with Self-Supervised Discrete Speech Units for Spoken Language Understanding [51.32965203977845]
本稿では,連続的な音声エンコーダ出力の代わりに離散音声単位(DSU)を用いることを提案する。
提案モデルでは, 未知領域からの音声入力に対する頑健な性能と, 音声質問応答における指示追従能力を示す。
この結果から,ASRタスクとデータセットは,音声質問応答タスクの指導訓練に必須ではないことが示唆された。
論文 参考訳(メタデータ) (2024-06-13T17:28:13Z) - ASoBO: Attentive Beamformer Selection for Distant Speaker Diarization in Meetings [4.125756306660331]
話者ダイアリゼーション(SD)は、同一話者に属する音声セグメントをグループ化することを目的としている。
ビームフォーミング(ビームフォーミング、つまり空間フィルタリング)は、マルチマイクロフォンオーディオデータを処理する一般的な方法である。
本稿では,固定空間フィルタのバンクの出力を選択する自己注意型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-05T13:28:28Z) - Online speaker diarization of meetings guided by speech separation [0.0]
重複した音声は、話者ダイアリゼーションシステムに問題があることで知られている。
長時間録音のオンライン話者ダイアリゼーションに適した音声分離誘導ダイアリゼーション方式を提案する。
論文 参考訳(メタデータ) (2024-01-30T09:09:22Z) - Joint speech and overlap detection: a benchmark over multiple audio
setup and speech domains [0.0]
VADとOSDは多クラス分類モデルを用いて共同で訓練することができる。
本稿では,様々なVADモデルとOSDモデルの完全かつ新しいベンチマークを提案する。
我々の2/3クラスシステムは、時間的畳み込みネットワークと設定に適応した音声表現を組み合わせることで、最先端の結果より優れています。
論文 参考訳(メタデータ) (2023-07-24T14:29:21Z) - Bi-LSTM Scoring Based Similarity Measurement with Agglomerative
Hierarchical Clustering (AHC) for Speaker Diarization [0.0]
2つの話者間の典型的な会話は、声が重なり合う部分からなり、互いに中断したり、複数の文間での会話を止めたりする。
ダイアリゼーション技術の最近の進歩は、話者ダイアリゼーションシステムを即興化するニューラルネットワークベースのアプローチを活用している。
類似度行列に存在する要素を推定するための双方向長短期記憶ネットワークを提案する。
論文 参考訳(メタデータ) (2022-05-19T17:20:51Z) - Continuous Speech Separation with Ad Hoc Microphone Arrays [35.87274524040486]
音声分離は複数話者音声認識に有効であることが示された。
本稿では,このアプローチを連続音声分離に拡張する。
単一話者セグメントにおける音声問題を緩和する2つの手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T13:01:08Z) - FragmentVC: Any-to-Any Voice Conversion by End-to-End Extracting and
Fusing Fine-Grained Voice Fragments With Attention [66.77490220410249]
本稿では、Wav2Vec 2.0から、音源話者からの発声の潜在音声構造を求めるFragmentVCを提案する。
FragmentVCは、ターゲット話者発話からきめ細かい音声断片を抽出し、所望の発話に融合することができる。
提案手法は, コンテンツと話者情報との絡み合いを考慮せずに, 再構成損失を学習する。
論文 参考訳(メタデータ) (2020-10-27T09:21:03Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z) - Target-Speaker Voice Activity Detection: a Novel Approach for
Multi-Speaker Diarization in a Dinner Party Scenario [51.50631198081903]
本稿では,TS-VAD(Target-Speaker Voice Activity Detection)手法を提案する。
TS-VADは各時間フレーム上の各話者の活動を直接予測する。
CHiME-6での実験では、TS-VADが最先端の結果を得ることが示された。
論文 参考訳(メタデータ) (2020-05-14T21:24:56Z) - SpEx: Multi-Scale Time Domain Speaker Extraction Network [89.00319878262005]
話者抽出は、ターゲット話者の声を複数話者環境から抽出することで、人間の選択的な聴覚的注意を模倣することを目的としている。
周波数領域の抽出を行い、抽出した大きさと推定位相スペクトルから時間領域信号を再構成することが一般的である。
本研究では,混合音声を音声信号を大域・位相スペクトルに分解する代わりに,マルチスケールの埋め込み係数に変換する時間領域話者抽出ネットワーク(SpEx)を提案する。
論文 参考訳(メタデータ) (2020-04-17T16:13:06Z) - Continuous speech separation: dataset and analysis [52.10378896407332]
自然な会話では、音声信号は連続的であり、重複成分と重複成分の両方を含む。
本稿では,連続音声分離アルゴリズムを評価するためのデータセットとプロトコルについて述べる。
論文 参考訳(メタデータ) (2020-01-30T18:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。