Dual policy as self-model for planning
- URL: http://arxiv.org/abs/2306.04440v2
- Date: Sun, 11 Jun 2023 12:20:49 GMT
- Title: Dual policy as self-model for planning
- Authors: Jaesung Yoo, Fernanda de la Torre, Guangyu Robert Yang
- Abstract summary: We refer to the model used to simulate one's decisions as the agent's self-model.
Inspired by current reinforcement learning approaches and neuroscience, we explore the benefits and limitations of using a distilled policy network as the self-model.
- Score: 71.73710074424511
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Planning is a data efficient decision-making strategy where an agent selects
candidate actions by exploring possible future states. To simulate future
states when there is a high-dimensional action space, the knowledge of one's
decision making strategy must be used to limit the number of actions to be
explored. We refer to the model used to simulate one's decisions as the agent's
self-model. While self-models are implicitly used widely in conjunction with
world models to plan actions, it remains unclear how self-models should be
designed. Inspired by current reinforcement learning approaches and
neuroscience, we explore the benefits and limitations of using a distilled
policy network as the self-model. In such dual-policy agents, a model-free
policy and a distilled policy are used for model-free actions and planned
actions, respectively. Our results on a ecologically relevant, parametric
environment indicate that distilled policy network for self-model stabilizes
training, has faster inference than using model-free policy, promotes better
exploration, and could learn a comprehensive understanding of its own
behaviors, at the cost of distilling a new network apart from the model-free
policy.
Related papers
- Adaptive Planning with Generative Models under Uncertainty [20.922248169620783]
Planning with generative models has emerged as an effective decision-making paradigm across a wide range of domains.
While continuous replanning at each timestep might seem intuitive because it allows decisions to be made based on the most recent environmental observations, it results in substantial computational challenges.
Our work addresses this challenge by introducing a simple adaptive planning policy that leverages the generative model's ability to predict long-horizon state trajectories.
arXiv Detail & Related papers (2024-08-02T18:07:53Z) - COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration.
$textttCOPlanner$ is a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem.
arXiv Detail & Related papers (2023-10-11T06:10:07Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - An Offline Risk-aware Policy Selection Method for Bayesian Markov
Decision Processes [0.0]
Exploitation vs Caution (EvC) is a paradigm that elegantly incorporates model uncertainty abiding by the Bayesian formalism.
We validate EvC with state-of-the-art approaches in different discrete, yet simple, environments offering a fair variety of MDP classes.
In the tested scenarios EvC manages to select robust policies and hence stands out as a useful tool for practitioners.
arXiv Detail & Related papers (2021-05-27T20:12:20Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.