Improving neural network representations using human similarity
judgments
- URL: http://arxiv.org/abs/2306.04507v2
- Date: Tue, 26 Sep 2023 09:32:54 GMT
- Title: Improving neural network representations using human similarity
judgments
- Authors: Lukas Muttenthaler and Lorenz Linhardt and Jonas Dippel and Robert A.
Vandermeulen and Katherine Hermann and Andrew K. Lampinen and Simon Kornblith
- Abstract summary: We study the impact of supervising a global structure by linearly aligning it with human similarity judgments.
We propose a novel method that aligns the global structure of representations while preserving their local structure.
Our results indicate that human visual representations are globally organized in a way that facilitates learning from few examples.
- Score: 33.62351833204206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have reached human-level performance on many computer
vision tasks. However, the objectives used to train these networks enforce only
that similar images are embedded at similar locations in the representation
space, and do not directly constrain the global structure of the resulting
space. Here, we explore the impact of supervising this global structure by
linearly aligning it with human similarity judgments. We find that a naive
approach leads to large changes in local representational structure that harm
downstream performance. Thus, we propose a novel method that aligns the global
structure of representations while preserving their local structure. This
global-local transform considerably improves accuracy across a variety of
few-shot learning and anomaly detection tasks. Our results indicate that human
visual representations are globally organized in a way that facilitates
learning from few examples, and incorporating this global structure into neural
network representations improves performance on downstream tasks.
Related papers
- Generalization emerges from local optimization in a self-organized learning network [0.0]
We design and analyze a new paradigm for building supervised learning networks, driven only by local optimization rules without relying on a global error function.
Our network stores new knowledge in the nodes accurately and instantaneously, in the form of a lookup table.
We show on numerous examples of classification tasks that the networks generated by our algorithm systematically reach such a state of perfect generalization when the number of learned examples becomes sufficiently large.
We report on the dynamics of the change of state and show that it is abrupt and has the distinctive characteristics of a first order phase transition, a phenomenon already observed for traditional learning networks and known as grokking.
arXiv Detail & Related papers (2024-10-03T15:32:08Z) - Locally Supervised Learning with Periodic Global Guidance [19.41730292017383]
We propose Periodically Guided local Learning (PGL) to reinstate the global objective repetitively into the local-loss based training of neural networks.
We show that a simple periodic guidance scheme begets significant performance gains while having a low memory footprint.
arXiv Detail & Related papers (2022-08-01T13:06:26Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - A Unified Architecture of Semantic Segmentation and Hierarchical
Generative Adversarial Networks for Expression Manipulation [52.911307452212256]
We develop a unified architecture of semantic segmentation and hierarchical GANs.
A unique advantage of our framework is that on forward pass the semantic segmentation network conditions the generative model.
We evaluate our method on two challenging facial expression translation benchmarks, AffectNet and RaFD, and a semantic segmentation benchmark, CelebAMask-HQ.
arXiv Detail & Related papers (2021-12-08T22:06:31Z) - Network Embedding via Deep Prediction Model [25.727377978617465]
This paper proposes a network embedding framework to capture the transfer behaviors on structured networks via deep prediction models.
A network structure embedding layer is added into conventional deep prediction models, including Long Short-Term Memory Network and Recurrent Neural Network.
Experimental studies are conducted on various datasets including social networks, citation networks, biomedical network, collaboration network and language network.
arXiv Detail & Related papers (2021-04-27T16:56:00Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
Current state-of-the-art visual recognition systems rely on pretraining a neural network on a large-scale dataset and finetuning the network weights on a smaller dataset.
In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness.
Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks.
arXiv Detail & Related papers (2021-03-31T08:15:17Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
arXiv Detail & Related papers (2020-11-01T19:24:27Z) - A U-Net Based Discriminator for Generative Adversarial Networks [86.67102929147592]
We propose an alternative U-Net based discriminator architecture for generative adversarial networks (GANs)
The proposed architecture allows to provide detailed per-pixel feedback to the generator while maintaining the global coherence of synthesized images.
The novel discriminator improves over the state of the art in terms of the standard distribution and image quality metrics.
arXiv Detail & Related papers (2020-02-28T11:16:54Z) - Global and Local Feature Learning for Ego-Network Analysis [0.7661062091984316]
In an ego-network, an individual (ego) organizes its friends (alters) in different groups (social circles)
Recent advances in language modeling via deep learning have inspired new methods for learning network representations.
We show that the task of social circle prediction benefits from a combination of global and local features generated by our technique.
arXiv Detail & Related papers (2020-02-16T21:35:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.