Proximity-Informed Calibration for Deep Neural Networks
- URL: http://arxiv.org/abs/2306.04590v2
- Date: Sun, 17 Mar 2024 06:43:38 GMT
- Title: Proximity-Informed Calibration for Deep Neural Networks
- Authors: Miao Xiong, Ailin Deng, Pang Wei Koh, Jiaying Wu, Shen Li, Jianqing Xu, Bryan Hooi,
- Abstract summary: ProCal is a plug-and-play algorithm with a theoretical guarantee to adjust sample confidence based on proximity.
We show that ProCal is effective in addressing proximity bias and improving calibration on balanced, long-tail, and distribution-shift settings.
- Score: 49.330703634912915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Confidence calibration is central to providing accurate and interpretable uncertainty estimates, especially under safety-critical scenarios. However, we find that existing calibration algorithms often overlook the issue of *proximity bias*, a phenomenon where models tend to be more overconfident in low proximity data (i.e., data lying in the sparse region of the data distribution) compared to high proximity samples, and thus suffer from inconsistent miscalibration across different proximity samples. We examine the problem over 504 pretrained ImageNet models and observe that: 1) Proximity bias exists across a wide variety of model architectures and sizes; 2) Transformer-based models are relatively more susceptible to proximity bias than CNN-based models; 3) Proximity bias persists even after performing popular calibration algorithms like temperature scaling; 4) Models tend to overfit more heavily on low proximity samples than on high proximity samples. Motivated by the empirical findings, we propose ProCal, a plug-and-play algorithm with a theoretical guarantee to adjust sample confidence based on proximity. To further quantify the effectiveness of calibration algorithms in mitigating proximity bias, we introduce proximity-informed expected calibration error (PIECE) with theoretical analysis. We show that ProCal is effective in addressing proximity bias and improving calibration on balanced, long-tail, and distribution-shift settings under four metrics over various model architectures. We believe our findings on proximity bias will guide the development of *fairer and better-calibrated* models, contributing to the broader pursuit of trustworthy AI. Our code is available at: https://github.com/MiaoXiong2320/ProximityBias-Calibration.
Related papers
- Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - Confidence Calibration for Intent Detection via Hyperspherical Space and
Rebalanced Accuracy-Uncertainty Loss [17.26964140836123]
In some scenarios, users do not only care about the accuracy but also the confidence of model.
We propose a model using the hyperspherical space and rebalanced accuracy-uncertainty loss.
Our model outperforms the existing calibration methods and achieves a significant improvement on the calibration metric.
arXiv Detail & Related papers (2022-03-17T12:01:33Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
We consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem.
detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions.
We propose T-Cal, a minimax test for calibration based on a de-biased plug-in estimator of the $ell$-Expected Error (ECE)
arXiv Detail & Related papers (2022-03-03T16:58:54Z) - Bayesian Confidence Calibration for Epistemic Uncertainty Modelling [4.358626952482686]
We introduce a framework to obtain confidence estimates in conjunction with an uncertainty of the calibration method.
We achieve state-of-the-art calibration performance for object detection calibration.
arXiv Detail & Related papers (2021-09-21T10:53:16Z) - Revisiting the Calibration of Modern Neural Networks [44.26439222399464]
Many instances of miscalibration in modern neural networks have been reported, suggesting a trend that newer, more accurate models produce poorly calibrated predictions.
We systematically relate model calibration and accuracy, and find that the most recent models, notably those not using convolutions, are among the best calibrated.
We also show that model size and amount of pretraining do not fully explain these differences, suggesting that architecture is a major determinant of calibration properties.
arXiv Detail & Related papers (2021-06-15T09:24:43Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
Miscalibration is a mismatch between a model's confidence and its correctness.
We show that focal loss allows us to learn models that are already very well calibrated.
We show that our approach achieves state-of-the-art calibration without compromising on accuracy in almost all cases.
arXiv Detail & Related papers (2020-02-21T17:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.