Bayesian Confidence Calibration for Epistemic Uncertainty Modelling
- URL: http://arxiv.org/abs/2109.10092v1
- Date: Tue, 21 Sep 2021 10:53:16 GMT
- Title: Bayesian Confidence Calibration for Epistemic Uncertainty Modelling
- Authors: Fabian K\"uppers, Jan Kronenberger, Jonas Schneider, Anselm Haselhoff
- Abstract summary: We introduce a framework to obtain confidence estimates in conjunction with an uncertainty of the calibration method.
We achieve state-of-the-art calibration performance for object detection calibration.
- Score: 4.358626952482686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern neural networks have found to be miscalibrated in terms of confidence
calibration, i.e., their predicted confidence scores do not reflect the
observed accuracy or precision. Recent work has introduced methods for post-hoc
confidence calibration for classification as well as for object detection to
address this issue. Especially in safety critical applications, it is crucial
to obtain a reliable self-assessment of a model. But what if the calibration
method itself is uncertain, e.g., due to an insufficient knowledge base?
We introduce Bayesian confidence calibration - a framework to obtain
calibrated confidence estimates in conjunction with an uncertainty of the
calibration method. Commonly, Bayesian neural networks (BNN) are used to
indicate a network's uncertainty about a certain prediction. BNNs are
interpreted as neural networks that use distributions instead of weights for
inference. We transfer this idea of using distributions to confidence
calibration. For this purpose, we use stochastic variational inference to build
a calibration mapping that outputs a probability distribution rather than a
single calibrated estimate. Using this approach, we achieve state-of-the-art
calibration performance for object detection calibration. Finally, we show that
this additional type of uncertainty can be used as a sufficient criterion for
covariate shift detection. All code is open source and available at
https://github.com/EFS-OpenSource/calibration-framework.
Related papers
- Optimizing Calibration by Gaining Aware of Prediction Correctness [30.619608580138802]
Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class.
We propose a new post-hoc calibration objective derived from the aim of calibration.
arXiv Detail & Related papers (2024-04-19T17:25:43Z) - Two Sides of Miscalibration: Identifying Over and Under-Confidence
Prediction for Network Calibration [1.192436948211501]
Proper confidence calibration of deep neural networks is essential for reliable predictions in safety-critical tasks.
Miscalibration can lead to model over-confidence and/or under-confidence.
We introduce a novel metric, a miscalibration score, to identify the overall and class-wise calibration status.
We use the class-wise miscalibration score as a proxy to design a calibration technique that can tackle both over and under-confidence.
arXiv Detail & Related papers (2023-08-06T17:59:14Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - Beyond calibration: estimating the grouping loss of modern neural
networks [68.8204255655161]
Proper scoring rule theory shows that given the calibration loss, the missing piece to characterize individual errors is the grouping loss.
We show that modern neural network architectures in vision and NLP exhibit grouping loss, notably in distribution shifts settings.
arXiv Detail & Related papers (2022-10-28T07:04:20Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - Revisiting Calibration for Question Answering [16.54743762235555]
We argue that the traditional evaluation of calibration does not reflect usefulness of the model confidence.
We propose a new calibration metric, MacroCE, that better captures whether the model assigns low confidence to wrong predictions and high confidence to correct predictions.
arXiv Detail & Related papers (2022-05-25T05:49:56Z) - Confidence Calibration for Intent Detection via Hyperspherical Space and
Rebalanced Accuracy-Uncertainty Loss [17.26964140836123]
In some scenarios, users do not only care about the accuracy but also the confidence of model.
We propose a model using the hyperspherical space and rebalanced accuracy-uncertainty loss.
Our model outperforms the existing calibration methods and achieves a significant improvement on the calibration metric.
arXiv Detail & Related papers (2022-03-17T12:01:33Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
We show the breakdown of expected calibration error (ECE) into predicted confidence and refinement.
We highlight that regularisation based calibration only focuses on naively reducing a model's confidence.
We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the utility of a DNN by degrading its refinement.
arXiv Detail & Related papers (2021-06-17T11:04:14Z) - Improving model calibration with accuracy versus uncertainty
optimization [17.056768055368384]
A well-calibrated model should be accurate when it is certain about its prediction and indicate high uncertainty when it is likely to be inaccurate.
We propose an optimization method that leverages the relationship between accuracy and uncertainty as an anchor for uncertainty calibration.
We demonstrate our approach with mean-field variational inference and compare with state-of-the-art methods.
arXiv Detail & Related papers (2020-12-14T20:19:21Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Calibration of Neural Networks using Splines [51.42640515410253]
Measuring calibration error amounts to comparing two empirical distributions.
We introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test.
Our method consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
arXiv Detail & Related papers (2020-06-23T07:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.