論文の概要: Generalization Across Observation Shifts in Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2306.04595v1
- Date: Wed, 7 Jun 2023 16:49:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 13:12:20.925090
- Title: Generalization Across Observation Shifts in Reinforcement Learning
- Title(参考訳): 強化学習における観察の一般化
- Authors: Anuj Mahajan and Amy Zhang
- Abstract要約: バイシミュレーションフレームワークを拡張して、コンテキスト依存の観察シフトを考慮します。
具体的には,シミュレータに基づく学習設定に焦点をあて,代替観測を用いて表現空間を学習する。
これにより、テスト期間中にエージェントをさまざまな監視設定にデプロイし、目に見えないシナリオに一般化することができます。
- 参考スコア(独自算出の注目度): 13.136140831757189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning policies which are robust to changes in the environment are critical
for real world deployment of Reinforcement Learning agents. They are also
necessary for achieving good generalization across environment shifts. We focus
on bisimulation metrics, which provide a powerful means for abstracting task
relevant components of the observation and learning a succinct representation
space for training the agent using reinforcement learning. In this work, we
extend the bisimulation framework to also account for context dependent
observation shifts. Specifically, we focus on the simulator based learning
setting and use alternate observations to learn a representation space which is
invariant to observation shifts using a novel bisimulation based objective.
This allows us to deploy the agent to varying observation settings during test
time and generalize to unseen scenarios. We further provide novel theoretical
bounds for simulator fidelity and performance transfer guarantees for using a
learnt policy to unseen shifts. Empirical analysis on the high-dimensional
image based control domains demonstrates the efficacy of our method.
- Abstract(参考訳): 環境の変化にロバストな学習方針は強化学習エージェントの現実世界への展開に不可欠である。
また、環境シフトをまたいだ優れた一般化を実現するためにも必要である。
我々は,強化学習を用いてエージェントを訓練するための簡潔な表現空間を学習し,観察のタスク関連コンポーネントを抽象化する強力な手段を提供するバイシミュレーション指標に着目した。
本研究では,バイシミュレーションフレームワークを拡張し,文脈依存観測シフトも考慮する。
具体的には,シミュレータに基づく学習設定に焦点をあて,新しいビシミュレーションに基づく目的を用いて,観測シフトに不変な表現空間を学習する。
これにより、テスト時間中にさまざまな監視設定にエージェントをデプロイし、見えないシナリオに一般化することができます。
さらに,シミュレータの忠実性と性能伝達保証のための新しい理論境界を提供し,学習ポリシーを用いてシフトを検知する。
高次元画像ベース制御領域の実証分析により,本手法の有効性が示された。
関連論文リスト
- Inferring Behavior-Specific Context Improves Zero-Shot Generalization in Reinforcement Learning [4.902544998453533]
環境の重力レベルなどの文脈的手がかりの理解と活用は、堅牢な一般化に不可欠である。
提案アルゴリズムは, 様々なシミュレートされた領域における一般化を改良し, ゼロショット設定における事前の文脈学習技術より優れていることを示す。
論文 参考訳(メタデータ) (2024-04-15T07:31:48Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
照明やシーンテクスチャの微妙な変化の下では,操作や制御作業のために設計された視覚表現が必ずしも一般化されないことがわかった。
創発的セグメンテーション能力は,ViTモデルにおける分布外一般化の強い予測因子であることがわかった。
論文 参考訳(メタデータ) (2023-11-03T18:09:08Z) - Invariance is Key to Generalization: Examining the Role of
Representation in Sim-to-Real Transfer for Visual Navigation [35.01394611106655]
一般化の鍵は、すべてのタスク関連情報をキャプチャするのに十分なリッチな表現である。
このような視覚ナビゲーションの表現を実験的に研究する。
我々の表現は、トレーニングドメインとテストドメイン間のA距離を減少させる。
論文 参考訳(メタデータ) (2023-10-23T15:15:19Z) - Improving Reinforcement Learning Efficiency with Auxiliary Tasks in
Non-Visual Environments: A Comparison [0.0]
本研究は,低次元非視覚的観察のための唯一の疎結合表現学習法である,我々の知識を最大限に活用して,一般的な補助課題と比較する。
その結果, 十分複雑な環境下では, 補助的タスクによる表現学習は, 性能向上にのみ寄与することがわかった。
論文 参考訳(メタデータ) (2023-10-06T13:22:26Z) - Sequential Action-Induced Invariant Representation for Reinforcement
Learning [1.2046159151610263]
視覚的障害を伴う高次元観察からタスク関連状態表現を正確に学習する方法は、視覚的強化学習において難しい問題である。
本稿では,逐次動作の制御信号に従うコンポーネントのみを保持するために,補助学習者によってエンコーダを最適化した逐次行動誘発不変表現(SAR)法を提案する。
論文 参考訳(メタデータ) (2023-09-22T05:31:55Z) - Analysis of the Memorization and Generalization Capabilities of AI
Agents: Are Continual Learners Robust? [91.682459306359]
連続学習(CL)では、AIエージェントが動的環境下で非定常データストリームから学習する。
本稿では,過去の知識を維持しつつ,動的環境への堅牢な一般化を実現するための新しいCLフレームワークを提案する。
提案フレームワークの一般化と記憶性能を理論的に解析した。
論文 参考訳(メタデータ) (2023-09-18T21:00:01Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
我々はtextbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL) という効果的なフレームワークを提案する。
MA2CLは、潜伏空間におけるマスクされたエージェント観察を再構築することにより、時間的およびエージェントレベルの予測の両方の学習表現を奨励する。
提案手法は,様々なMARLアルゴリズムの性能とサンプル効率を大幅に向上させ,様々な視覚的,状態的シナリオにおいて,他の手法よりも優れる。
論文 参考訳(メタデータ) (2023-06-03T05:32:19Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Instance based Generalization in Reinforcement Learning [24.485597364200824]
部分観測可能なマルコフ決定過程(POMDP)の文脈における政策学習の分析
探索戦略とは独立に、再使用したインスタンスは、トレーニング中にエージェントが観察するマルコフダイナミクスに大きな変化をもたらすことを証明している。
我々は、データ収集に使用されるコンセンサスポリシーを計算し、インスタンス固有のエクスプロイトを許可しない、特別なポリシーのアンサンブルに対して共有信念表現を訓練することを提案する。
論文 参考訳(メタデータ) (2020-11-02T16:19:44Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
本研究では,表現学習が画像などのリッチな観察からの強化学習を,ドメイン知識や画素再構成に頼ることなく促進する方法について検討する。
シミュレーションメトリクスは、連続MDPの状態間の振る舞いの類似性を定量化する。
修正された視覚的 MuJoCo タスクを用いてタスク関連情報を無視する手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-06-18T17:59:35Z) - Guided Variational Autoencoder for Disentanglement Learning [79.02010588207416]
本稿では,潜在表現非絡み合い学習を行うことで,制御可能な生成モデルを学習できるアルゴリズム,Guided-VAEを提案する。
我々は、ガイド-VAEにおける教師なし戦略と教師なし戦略を設計し、バニラVAE上でのモデリングと制御能力の強化を観察する。
論文 参考訳(メタデータ) (2020-04-02T20:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。