Robust-DefReg: A Robust Deformable Point Cloud Registration Method based
on Graph Convolutional Neural Networks
- URL: http://arxiv.org/abs/2306.04701v1
- Date: Wed, 7 Jun 2023 18:08:11 GMT
- Title: Robust-DefReg: A Robust Deformable Point Cloud Registration Method based
on Graph Convolutional Neural Networks
- Authors: Sara Monji-Azad, Marvin Kinz, J\"urgen Hesser
- Abstract summary: This paper introduces Robust-DefReg, a robust non-rigid point cloud registration method based on graph convolutional networks (GCNNs)
The proposed method achieves high accuracy in large deformations while maintaining computational efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Point cloud registration is a fundamental problem in computer vision that
aims to estimate the transformation between corresponding sets of points.
Non-rigid registration, in particular, involves addressing challenges including
various levels of deformation, noise, outliers, and data incompleteness. This
paper introduces Robust-DefReg, a robust non-rigid point cloud registration
method based on graph convolutional networks (GCNNs). Robust-DefReg is a
coarse-to-fine registration approach within an end-to-end pipeline, leveraging
the advantages of both coarse and fine methods. The method learns global
features to find correspondences between source and target point clouds, to
enable appropriate initial alignment, and subsequently fine registration. The
simultaneous achievement of high accuracy and robustness across all challenges
is reported less frequently in existing studies, making it a key objective of
the Robust-DefReg method. The proposed method achieves high accuracy in large
deformations while maintaining computational efficiency. This method possesses
three primary attributes: high accuracy, robustness to different challenges,
and computational efficiency. The experimental results show that the proposed
Robust-DefReg holds significant potential as a foundational architecture for
future investigations in non-rigid point cloud registration. The source code of
Robust-DefReg is available.
Related papers
- Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors [53.6277160912059]
We propose a method to promote pros of data-driven based and overfitting-based methods for better generalization, faster inference, and higher accuracy in learning neural SDFs.
We introduce a novel statistical reasoning algorithm in local regions which is able to finetune data-driven based priors without signed distance supervision, clean point cloud, or point normals.
arXiv Detail & Related papers (2024-10-25T16:48:44Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - DIPR: Efficient Point Cloud Registration via Dynamic Iteration [4.491867613612359]
We introduce a novel Efficient Point Cloud Registration via Dynamic It framework, DIPR, that makes the neural network interactively focus on overlapping points based on sparser input points.
Our proposed approach achieves superior registration accuracy while significantly reducing computational time and GPU memory consumption compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-05T16:47:46Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - GAFAR: Graph-Attention Feature-Augmentation for Registration A Fast and
Light-weight Point Set Registration Algorithm [12.592563880121816]
rigid registration of point clouds is a fundamental problem in computer vision.
Deep learning in computer vision has brought new drive to research on this topic.
We present a novel fast and light-weight network architecture using the attention mechanism to augment point descriptors.
arXiv Detail & Related papers (2023-07-05T14:50:36Z) - GraphReg: Dynamical Point Cloud Registration with Geometry-aware Graph
Signal Processing [0.0]
This study presents a high-accuracy, efficient, and physically induced method for 3D point cloud registration.
We explore geometry aware rigid-body dynamics to regulate the particle (point) motion, which results in more precise and robust registration.
Results demonstrate that our proposed method outperforms state-of-the-art approaches in terms of accuracy and is more suitable for registering large-scale point clouds.
arXiv Detail & Related papers (2023-02-02T14:06:46Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - GenReg: Deep Generative Method for Fast Point Cloud Registration [18.66568286698704]
We propose a new data-driven registration algorithm by investigating deep generative neural networks to point cloud registration.
The experiments on both ModelNet40 and 7Scene datasets demonstrate that the proposed algorithm achieves state-of-the-art accuracy and efficiency.
arXiv Detail & Related papers (2021-11-23T10:52:09Z) - End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences [17.70819292121181]
3D Point cloud registration is still a very challenging topic due to the difficulty in finding the rigid transformation between two point clouds.
In this paper, we present an end-to-end deep-learning based approach to resolve the point cloud registration problem.
arXiv Detail & Related papers (2020-11-30T06:55:05Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
Point cloud registration is a fundamental problem in 3D computer vision, graphics and robotics.
In this paper, we introduce Deep Gaussian Mixture Registration (DeepGMR), the first learning-based registration method.
Our proposed method shows favorable performance when compared with state-of-the-art geometry-based and learning-based registration methods.
arXiv Detail & Related papers (2020-08-20T17:25:16Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.