論文の概要: WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models
- arxiv url: http://arxiv.org/abs/2306.04744v3
- Date: Wed, 24 Apr 2024 04:31:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-27 00:07:23.914521
- Title: WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models
- Title(参考訳): WOUAF:テキスト・画像拡散モデルにおけるユーザ属性とフィンガープリントの軽量化
- Authors: Changhoon Kim, Kyle Min, Maitreya Patel, Sheng Cheng, Yezhou Yang,
- Abstract要約: 本稿では,生成画像に責任を負うモデルフィンガープリントの新たなアプローチを提案する。
提案手法は,ユーザ固有のデジタル指紋に基づいて生成モデルを修正し,ユーザへ遡ることができるコンテンツにユニークな識別子を印字する。
- 参考スコア(独自算出の注目度): 32.29120988096214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Although providing some mitigation, traditional fingerprinting mechanisms fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. Through extensive evaluation, we show that our method outperforms baseline methods with an average improvement of 11\% in handling image post-processes. Our method presents a promising and novel avenue for accountable model distribution and responsible use. Our code is available in \url{https://github.com/kylemin/WOUAF}.
- Abstract(参考訳): 生成モデルの急速な進歩は、テキスト記述から超現実的画像の作成を容易にし、誤情報のような社会的な重要な懸念を同時にエスカレートさせてきた。
いくつかの軽減策を提供しているが、従来の指紋認証機構は、悪意ある合成画像の使用に対する責任を負うには不十分である。
本稿では,生成画像に対する責任を負うモデルフィンガープリントの新たなアプローチを提案する。
提案手法は,ユーザ固有のデジタル指紋に基づいて生成モデルを修正し,ユーザへ遡ることができるコンテンツにユニークな識別子を印字する。
安定拡散モデルを用いたテキスト・トゥ・イメージ(T2I)タスクに微調整を取り入れたこのアプローチは、出力品質に最小限の影響を伴って、ほぼ完全な帰属精度を示す。
本手法は,画像後処理の処理効率を平均11倍に向上させ,ベースライン法よりも優れていることを示す。
提案手法は,説明責任のあるモデル分布と責任ある利用のための,有望で斬新な道を示す。
私たちのコードは \url{https://github.com/kylemin/WOUAF} で利用可能です。
関連論文リスト
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
「忘れ分布からのサンプルを特徴とする特定種類の画像の生成を減らすために、近似機械学習アルゴリズムを提案する。」
次に、既存のベースラインと比較してモデルの整合性を保つ上で優れた効果を示す未学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-04T13:15:28Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
本稿では,MMAR(Multi-Modal Auto-Regressive)確率モデルフレームワークを提案する。
離散化の手法とは異なり、MMARは情報損失を避けるために連続的に評価された画像トークンを取り入れる。
MMARは他のジョイントマルチモーダルモデルよりもはるかに優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-14T17:57:18Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
我々は、ウォーターマークインフォームドブレンディング(TEAWIB)による潜伏拡散モデルに対する効果的なユーザ属性に向けた新しいフレームワークを提案する。
TEAWIBは、ユーザ固有の透かしを生成モデルにシームレスに統合する、ユニークな準備可能な構成アプローチを取り入れている。
TEAWIBの有効性を検証し、知覚的品質と帰属精度で最先端の性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-09-17T07:52:09Z) - Enhancing Fingerprint Image Synthesis with GANs, Diffusion Models, and Style Transfer Techniques [0.44739156031315924]
我々は様々な方法でノイズからライブ指紋を生成し、画像翻訳技術を用いてライブ指紋画像をスプーフに変換する。
我々はFr'echet Inception Distance (FID) とFalse Acceptance Rate (FAR) によって生成されたライブ指紋画像の多様性と現実性を評価する。
論文 参考訳(メタデータ) (2024-03-20T18:36:30Z) - Regeneration Based Training-free Attribution of Fake Images Generated by
Text-to-Image Generative Models [39.33821502730661]
そこで本研究では,テキスト・ツー・イメージ・モデルによって生成された偽画像をソース・モデルに属性付けするためのトレーニング不要な手法を提案する。
テスト画像と候補画像の類似性を計算し、ランキングすることにより、画像のソースを決定することができる。
論文 参考訳(メタデータ) (2024-03-03T11:55:49Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
PGPIS(Pose-Guided Person Image Synthesis)のためのCFLD(Coarse-to-Fine Latent Diffusion)法を提案する。
認識修正デコーダは、学習可能なクエリの集合を段階的に洗練し、粗いプロンプトとして人物画像の意味的理解を抽出するように設計されている。
論文 参考訳(メタデータ) (2024-02-28T06:07:07Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
著作権法は、クリエイティブ作品を再生、配布、収益化する排他的権利をクリエイターに与えている。
テキスト・ツー・イメージ・ジェネレーションの最近の進歩は、著作権の執行に重大な課題をもたらしている。
CLIP、ChatGPT、拡散モデルを調和させてデータセットをキュレートする新しいパイプラインを導入する。
論文 参考訳(メタデータ) (2024-01-04T11:14:01Z) - Fair Text-to-Image Diffusion via Fair Mapping [32.02815667307623]
本稿では,事前学習したテキスト・画像拡散モデルを修正する,フレキシブルでモデルに依存しない,軽量なアプローチを提案する。
暗黙的言語バイアスの問題を効果的に解決することにより、より公平で多様な画像出力を生成する。
論文 参考訳(メタデータ) (2023-11-29T15:02:01Z) - Robust Retraining-free GAN Fingerprinting via Personalized Normalization [21.63902009635896]
提案手法は,ParamGen Netsの入力を変更するだけで,異なる指紋をGAN内に埋め込むことができる。
モデルレベルの攻撃と画像レベルの攻撃の両方に対するロバスト性の観点から提案手法の性能は,最先端技術よりも優れている。
論文 参考訳(メタデータ) (2023-11-09T16:09:12Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - Uncovering the Disentanglement Capability in Text-to-Image Diffusion
Models [60.63556257324894]
画像生成モデルの重要な特性は、異なる属性をアンタングルする能力である。
本稿では,2つのテキスト埋め込みの混合重みをスタイルマッチングとコンテンツ保存に最適化した,シンプルで軽量な画像編集アルゴリズムを提案する。
実験により,提案手法は拡散モデルに基づく画像編集アルゴリズムよりも優れた性能で,幅広い属性を修正可能であることが示された。
論文 参考訳(メタデータ) (2022-12-16T19:58:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。