SKG: A Versatile Information Retrieval and Analysis Framework for
Academic Papers with Semantic Knowledge Graphs
- URL: http://arxiv.org/abs/2306.04758v1
- Date: Wed, 7 Jun 2023 20:16:08 GMT
- Title: SKG: A Versatile Information Retrieval and Analysis Framework for
Academic Papers with Semantic Knowledge Graphs
- Authors: Yamei Tu, Rui Qiu, Han-Wei Shen
- Abstract summary: We propose a Semantic Knowledge Graph that integrates semantic concepts from abstracts and other meta-information to represent the corpus.
The SKG can support various semantic queries in academic literature thanks to the high diversity and rich information content stored within.
- Score: 9.668240269886413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The number of published research papers has experienced exponential growth in
recent years, which makes it crucial to develop new methods for efficient and
versatile information extraction and knowledge discovery. To address this need,
we propose a Semantic Knowledge Graph (SKG) that integrates semantic concepts
from abstracts and other meta-information to represent the corpus. The SKG can
support various semantic queries in academic literature thanks to the high
diversity and rich information content stored within. To extract knowledge from
unstructured text, we develop a Knowledge Extraction Module that includes a
semi-supervised pipeline for entity extraction and entity normalization. We
also create an ontology to integrate the concepts with other meta information,
enabling us to build the SKG. Furthermore, we design and develop a dataflow
system that demonstrates how to conduct various semantic queries flexibly and
interactively over the SKG. To demonstrate the effectiveness of our approach,
we conduct the research based on the visualization literature and provide
real-world use cases to show the usefulness of the SKG.
The dataset and codes for this work are available at
https://osf.io/aqv8p/?view_only=2c26b36e3e3941ce999df47e4616207f.
Related papers
- Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
The proposed research aims to develop an innovative semantic query processing system.
It enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University.
arXiv Detail & Related papers (2024-05-24T09:19:45Z) - Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey [61.8716670402084]
This survey focuses on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, and Multi-Modal Knowledge Graph (MM4KG)
Our review includes two primary task categories: KG-aware multi-modal learning tasks, and intrinsic MMKG tasks.
For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research.
arXiv Detail & Related papers (2024-02-08T04:04:36Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
We introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework to improve the semantic understanding of entities for Conversational recommender systems.
KERL uses a knowledge graph and a pre-trained language model to improve the semantic understanding of entities.
KERL achieves state-of-the-art results in both recommendation and response generation tasks.
arXiv Detail & Related papers (2023-12-18T06:41:23Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation.
We propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting.
arXiv Detail & Related papers (2023-05-19T14:56:57Z) - Semantic Similarity Measure of Natural Language Text through Machine
Learning and a Keyword-Aware Cross-Encoder-Ranking Summarizer -- A Case Study
Using UCGIS GIS&T Body of Knowledge [2.4909170697740968]
GIS&T Body of Knowledge (BoK) is a community-driven endeavor to define, develop, and document geospatial topics.
This research evaluates the effectiveness of multiple natural language processing (NLP) techniques in extracting semantics from text.
It also offers a new perspective on the use of machine learning techniques for analyzing scientific publications.
arXiv Detail & Related papers (2023-05-17T01:17:57Z) - Multi-Document Scientific Summarization from a Knowledge Graph-Centric
View [9.579482432715261]
We present KGSum, an MDSS model centred on knowledge graphs during both the encoding and decoding process.
Specifically, in the encoding process, two graph-based modules are proposed to incorporate knowledge graph information into paper encoding.
In the decoding process, we propose a two-stage decoder by first generating knowledge graph information of summary in the form of descriptive sentences, followed by generating the final summary.
arXiv Detail & Related papers (2022-09-09T14:20:59Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Relational Learning Analysis of Social Politics using Knowledge Graph
Embedding [11.978556412301975]
This paper presents a novel credibility domain-based KG Embedding framework.
It involves capturing a fusion of data obtained from heterogeneous resources into a formal KG representation depicted by a domain.
The framework also embodies a credibility module to ensure data quality and trustworthiness.
arXiv Detail & Related papers (2020-06-02T14:10:28Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.