Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph
- URL: http://arxiv.org/abs/2405.15374v1
- Date: Fri, 24 May 2024 09:19:45 GMT
- Title: Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph
- Authors: Runsong Jia, Bowen Zhang, Sergio J. Rodríguez Méndez, Pouya G. Omran,
- Abstract summary: The proposed research aims to develop an innovative semantic query processing system.
It enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University.
- Score: 1.7418328181959968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proposed research aims to develop an innovative semantic query processing system that enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University (ANU). The system integrates Large Language Models (LLMs) with the ANU Scholarly Knowledge Graph (ASKG), a structured repository of all research-related artifacts produced at ANU in the CS field. Each artifact and its parts are represented as textual nodes stored in a Knowledge Graph (KG). To address the limitations of traditional scholarly KG construction and utilization methods, which often fail to capture fine-grained details, we propose a novel framework that integrates the Deep Document Model (DDM) for comprehensive document representation and the KG-enhanced Query Processing (KGQP) for optimized complex query handling. DDM enables a fine-grained representation of the hierarchical structure and semantic relationships within academic papers, while KGQP leverages the KG structure to improve query accuracy and efficiency with LLMs. By combining the ASKG with LLMs, our approach enhances knowledge utilization and natural language understanding capabilities. The proposed system employs an automatic LLM-SPARQL fusion to retrieve relevant facts and textual nodes from the ASKG. Initial experiments demonstrate that our framework is superior to baseline methods in terms of accuracy retrieval and query efficiency. We showcase the practical application of our framework in academic research scenarios, highlighting its potential to revolutionize scholarly knowledge management and discovery. This work empowers researchers to acquire and utilize knowledge from documents more effectively and provides a foundation for developing precise and reliable interactions with LLMs.
Related papers
- Fine-tuning and Prompt Engineering with Cognitive Knowledge Graphs for Scholarly Knowledge Organization [0.14999444543328289]
This research focuses on effectively conveying structured scholarly knowledge by utilizing large language models (LLMs)
LLMs categorize scholarly articles and describe their contributions in a structured and comparable manner.
Our methodology involves harnessing LLM knowledge, and complementing it with domain expert-verified scholarly data sourced from a CKG.
arXiv Detail & Related papers (2024-09-10T11:31:02Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
We propose WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system.
First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval.
Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process.
arXiv Detail & Related papers (2024-08-14T15:19:16Z) - Combining Knowledge Graphs and Large Language Models [4.991122366385628]
Large language models (LLMs) show astonishing results in language understanding and generation.
They still show some disadvantages, such as hallucinations and lack of domain-specific knowledge.
These issues can be effectively mitigated by incorporating knowledge graphs (KGs)
This work collected 28 papers outlining methods for KG-powered LLMs, LLM-based KGs, and LLM-KG hybrid approaches.
arXiv Detail & Related papers (2024-07-09T05:42:53Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
Large Language Model Agents (LMAs) face issues such as information hallucinations, catastrophic forgetting, and limitations in processing long contexts.
This paper introduces a KG-RAG (Knowledge Graph-Retrieval Augmented Generation) pipeline to enhance the knowledge capabilities of LMAs.
Preliminary experiments on the ComplexWebQuestions dataset demonstrate notable improvements in the reduction of hallucinated content.
arXiv Detail & Related papers (2024-05-20T14:03:05Z) - Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Large Language Models (LLMs) pretrained on massive text corpus presents a promising avenue for enhancing recommender systems.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - A Knowledge-Injected Curriculum Pretraining Framework for Question Answering [70.13026036388794]
We propose a general Knowledge-Injected Curriculum Pretraining framework (KICP) to achieve comprehensive KG learning and exploitation for Knowledge-based question answering tasks.
The KI module first injects knowledge into the LM by generating KG-centered pretraining corpus, and generalizes the process into three key steps.
The KA module learns knowledge from the generated corpus with LM equipped with an adapter as well as keeps its original natural language understanding ability.
The CR module follows human reasoning patterns to construct three corpora with increasing difficulties of reasoning, and further trains the LM from easy to hard in a curriculum manner.
arXiv Detail & Related papers (2024-03-11T03:42:03Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
We propose an autonomous LLM-based agent framework, called KG-Agent.
In KG-Agent, we integrate the LLM, multifunctional toolbox, KG-based executor, and knowledge memory.
To guarantee the effectiveness, we leverage program language to formulate the multi-hop reasoning process over the KG.
arXiv Detail & Related papers (2024-02-17T02:07:49Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
We introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework to improve the semantic understanding of entities for Conversational recommender systems.
KERL uses a knowledge graph and a pre-trained language model to improve the semantic understanding of entities.
KERL achieves state-of-the-art results in both recommendation and response generation tasks.
arXiv Detail & Related papers (2023-12-18T06:41:23Z) - SKG: A Versatile Information Retrieval and Analysis Framework for
Academic Papers with Semantic Knowledge Graphs [9.668240269886413]
We propose a Semantic Knowledge Graph that integrates semantic concepts from abstracts and other meta-information to represent the corpus.
The SKG can support various semantic queries in academic literature thanks to the high diversity and rich information content stored within.
arXiv Detail & Related papers (2023-06-07T20:16:08Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.