Context-Aware Self-Supervised Learning of Whole Slide Images
- URL: http://arxiv.org/abs/2306.04763v1
- Date: Wed, 7 Jun 2023 20:23:05 GMT
- Title: Context-Aware Self-Supervised Learning of Whole Slide Images
- Authors: Milan Aryal, Nasim Yahyasoltani
- Abstract summary: A novel two-stage learning technique is presented in this work.
A graph representation capturing all dependencies among regions in the WSI is very intuitive.
The entire slide is presented as a graph, where the nodes correspond to the patches from the WSI.
The proposed framework is then tested using WSIs from prostate and kidney cancers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Presenting whole slide images (WSIs) as graph will enable a more efficient
and accurate learning framework for cancer diagnosis. Due to the fact that a
single WSI consists of billions of pixels and there is a lack of vast annotated
datasets required for computational pathology, the problem of learning from
WSIs using typical deep learning approaches such as convolutional neural
network (CNN) is challenging. Additionally, WSIs down-sampling may lead to the
loss of data that is essential for cancer detection. A novel two-stage learning
technique is presented in this work. Since context, such as topological
features in the tumor surroundings, may hold important information for cancer
grading and diagnosis, a graph representation capturing all dependencies among
regions in the WSI is very intuitive. Graph convolutional network (GCN) is
deployed to include context from the tumor and adjacent tissues, and
self-supervised learning is used to enhance training through unlabeled data.
More specifically, the entire slide is presented as a graph, where the nodes
correspond to the patches from the WSI. The proposed framework is then tested
using WSIs from prostate and kidney cancers. To assess the performance
improvement through self-supervised mechanism, the proposed context-aware model
is tested with and without use of pre-trained self-supervised layer. The
overall model is also compared with multi-instance learning (MIL) based and
other existing approaches.
Related papers
- MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
We propose a framework named MamMIL for WSI analysis.
We represent each WSI as an undirected graph.
To address the problem that Mamba can only process 1D sequences, we propose a topology-aware scanning mechanism.
arXiv Detail & Related papers (2024-03-08T09:02:13Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - Explainable and Position-Aware Learning in Digital Pathology [0.0]
In this work, classification of cancer from WSIs is performed with positional embedding and graph attention.
A comparison of the proposed method with leading approaches in cancer diagnosis and grading verify improved performance.
The identification of cancerous regions in WSIs is another critical task in cancer diagnosis.
arXiv Detail & Related papers (2023-06-14T01:53:17Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - A graph-transformer for whole slide image classification [11.968797693846476]
We present a Graph-Transformer (GT) that fuses a graph-based representation of an whole slide image (WSI) and a vision transformer for processing pathology images, called GTP, to predict disease grade.
Our findings demonstrate GTP as an interpretable and effective deep learning framework for WSI-level classification.
arXiv Detail & Related papers (2022-05-19T16:32:10Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - HistoTransfer: Understanding Transfer Learning for Histopathology [9.231495418218813]
We compare the performance of features extracted from networks trained on ImageNet and histopathology data.
We investigate if features learned using more complex networks lead to gain in performance.
arXiv Detail & Related papers (2021-06-13T18:55:23Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.