A self-supervised framework for learning whole slide representations
- URL: http://arxiv.org/abs/2402.06188v2
- Date: Thu, 23 May 2024 19:23:53 GMT
- Title: A self-supervised framework for learning whole slide representations
- Authors: Xinhai Hou, Cheng Jiang, Akhil Kondepudi, Yiwei Lyu, Asadur Chowdury, Honglak Lee, Todd C. Hollon,
- Abstract summary: We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
- Score: 52.774822784847565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Whole slide imaging is fundamental to biomedical microscopy and computational pathology. Previously, learning representations for gigapixel-sized whole slide images (WSIs) has relied on multiple instance learning with weak labels, which do not annotate the diverse morphologic features and spatial heterogeneity of WSIs. A high-quality self-supervised learning method for WSIs would provide transferable visual representations for downstream computational pathology tasks, without the need for dense annotations. We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of WSIs. Treating WSI patches as tokens, SPT combines data transformation strategies from language and vision modeling into a general and unified framework to generate views of WSIs for self-supervised pretraining. SPT leverages the inherent regional heterogeneity, histologic feature variability, and information redundancy within WSIs to learn high-quality whole slide representations. We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets. SPT significantly outperforms baselines for histopathologic diagnosis, cancer subtyping, and genetic mutation prediction. Finally, we demonstrate that SPT consistently improves whole slide representations when using off-the-shelf, in-domain, and foundational patch encoders for whole slide multiple instance learning.
Related papers
- WSI-VQA: Interpreting Whole Slide Images by Generative Visual Question Answering [6.315841446240698]
We propose a novel framework to interpret whole slide images (WSIs) by generative visual question answering.
WSI-VQA shows universality by reframing various kinds of slide-level tasks in a question-answering pattern.
We establish a WSI-VQA dataset which contains 8672 slide-level question-answering pairs with 977 WSIs.
arXiv Detail & Related papers (2024-07-08T04:37:32Z) - PathAlign: A vision-language model for whole slide images in histopathology [13.567674461880905]
We develop a vision-language model based on the BLIP-2 framework using WSIs and curated text from pathology reports.
This enables applications utilizing a shared image-text embedding space, such as text or image retrieval for finding cases of interest.
We present pathologist evaluation of text generation and text retrieval using WSI embeddings, as well as results for WSI classification and workflow prioritization.
arXiv Detail & Related papers (2024-06-27T23:43:36Z) - Generalizable Whole Slide Image Classification with Fine-Grained Visual-Semantic Interaction [17.989559761931435]
We propose a novel "Fine-grained Visual-Semantic Interaction" framework for WSI classification.
It is designed to enhance the model's generalizability by leveraging the interaction between localized visual patterns and fine-grained pathological semantics.
Our method demonstrates robust generalizability and strong transferability, dominantly outperforming the counterparts on the TCGA Lung Cancer dataset.
arXiv Detail & Related papers (2024-02-29T16:29:53Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Glioma subtype classification from histopathological images using
in-domain and out-of-domain transfer learning: An experimental study [9.161480191416551]
We compare various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas.
A semi-supervised learning approach is proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images.
The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning.
arXiv Detail & Related papers (2023-09-29T13:22:17Z) - Context-Aware Self-Supervised Learning of Whole Slide Images [0.0]
A novel two-stage learning technique is presented in this work.
A graph representation capturing all dependencies among regions in the WSI is very intuitive.
The entire slide is presented as a graph, where the nodes correspond to the patches from the WSI.
The proposed framework is then tested using WSIs from prostate and kidney cancers.
arXiv Detail & Related papers (2023-06-07T20:23:05Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - Vision Transformers: From Semantic Segmentation to Dense Prediction [139.15562023284187]
We explore the global context learning potentials of vision transformers (ViTs) for dense visual prediction.
Our motivation is that through learning global context at full receptive field layer by layer, ViTs may capture stronger long-range dependency information.
We formulate a family of Hierarchical Local-Global (HLG) Transformers, characterized by local attention within windows and global-attention across windows in a pyramidal architecture.
arXiv Detail & Related papers (2022-07-19T15:49:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.