Beyond Vanilla Variational Autoencoders: Detecting Posterior Collapse in Conditional and Hierarchical Variational Autoencoders
- URL: http://arxiv.org/abs/2306.05023v3
- Date: Mon, 13 May 2024 13:10:17 GMT
- Title: Beyond Vanilla Variational Autoencoders: Detecting Posterior Collapse in Conditional and Hierarchical Variational Autoencoders
- Authors: Hien Dang, Tho Tran, Tan Nguyen, Nhat Ho,
- Abstract summary: The posterior collapse phenomenon in variational autoencoder (VAE) can hinder the quality of the learned latent variables.
In this work, we advance the theoretical understanding of posterior collapse to two important and prevalent yet less studied classes of VAE: conditional VAE and hierarchical VAE.
- Score: 25.61363481391964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The posterior collapse phenomenon in variational autoencoder (VAE), where the variational posterior distribution closely matches the prior distribution, can hinder the quality of the learned latent variables. As a consequence of posterior collapse, the latent variables extracted by the encoder in VAE preserve less information from the input data and thus fail to produce meaningful representations as input to the reconstruction process in the decoder. While this phenomenon has been an actively addressed topic related to VAE performance, the theory for posterior collapse remains underdeveloped, especially beyond the standard VAE. In this work, we advance the theoretical understanding of posterior collapse to two important and prevalent yet less studied classes of VAE: conditional VAE and hierarchical VAE. Specifically, via a non-trivial theoretical analysis of linear conditional VAE and hierarchical VAE with two levels of latent, we prove that the cause of posterior collapses in these models includes the correlation between the input and output of the conditional VAE and the effect of learnable encoder variance in the hierarchical VAE. We empirically validate our theoretical findings for linear conditional and hierarchical VAE and demonstrate that these results are also predictive for non-linear cases with extensive experiments.
Related papers
- Matching aggregate posteriors in the variational autoencoder [0.5759862457142761]
The variational autoencoder (VAE) is a well-studied, deep, latent-variable model (DLVM)
This paper addresses shortcomings in VAEs by reformulating the objective function associated with VAEs in order to match the aggregate/marginal posterior distribution to the prior.
The proposed method is named the emphaggregate variational autoencoder (AVAE) and is built on the theoretical framework of the VAE.
arXiv Detail & Related papers (2023-11-13T19:22:37Z) - Posterior Consistency for Missing Data in Variational Autoencoders [11.18081298867526]
We consider the problem of learning Variational Autoencoders (VAEs) from data with missing values.
We propose an approach for regularizing an encoder's posterior distribution which promotes this consistency.
This improved performance can be observed for many classes of VAEs including VAEs equipped with normalizing flows.
arXiv Detail & Related papers (2023-10-25T13:56:02Z) - Posterior Collapse and Latent Variable Non-identifiability [54.842098835445]
We propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility.
Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
arXiv Detail & Related papers (2023-01-02T06:16:56Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Generalizing Variational Autoencoders with Hierarchical Empirical Bayes [6.273154057349038]
We present Hierarchical Empirical Bayes Autoencoder (HEBAE), a computationally stable framework for probabilistic generative models.
Our key contributions are two-fold. First, we make gains by placing a hierarchical prior over the encoding distribution, enabling us to adaptively balance the trade-off between minimizing the reconstruction loss function and avoiding over-regularization.
arXiv Detail & Related papers (2020-07-20T18:18:39Z) - Towards a Theoretical Understanding of the Robustness of Variational
Autoencoders [82.68133908421792]
We make inroads into understanding the robustness of Variational Autoencoders (VAEs) to adversarial attacks and other input perturbations.
We develop a novel criterion for robustness in probabilistic models: $r$-robustness.
We show that VAEs trained using disentangling methods score well under our robustness metrics.
arXiv Detail & Related papers (2020-07-14T21:22:29Z) - Discrete Variational Attention Models for Language Generation [51.88612022940496]
We propose a discrete variational attention model with categorical distribution over the attention mechanism owing to the discrete nature in languages.
Thanks to the property of discreteness, the training of our proposed approach does not suffer from posterior collapse.
arXiv Detail & Related papers (2020-04-21T05:49:04Z) - Variance Loss in Variational Autoencoders [0.0]
variance of generated data is significantly lower than that of training data.
Problem is particularly relevant in a two stage setting, where we use a second VAE to sample in the latent space of the first VAE.
Renormalizing the output of the second VAE towards the expected normal spherical distribution, we obtain a sudden burst in the quality of generated samples.
arXiv Detail & Related papers (2020-02-23T08:23:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.