Matching aggregate posteriors in the variational autoencoder
- URL: http://arxiv.org/abs/2311.07693v2
- Date: Fri, 04 Oct 2024 23:28:46 GMT
- Title: Matching aggregate posteriors in the variational autoencoder
- Authors: Surojit Saha, Sarang Joshi, Ross Whitaker,
- Abstract summary: The variational autoencoder (VAE) is a well-studied, deep, latent-variable model (DLVM)
This paper addresses shortcomings in VAEs by reformulating the objective function associated with VAEs in order to match the aggregate/marginal posterior distribution to the prior.
The proposed method is named the emphaggregate variational autoencoder (AVAE) and is built on the theoretical framework of the VAE.
- Score: 0.5759862457142761
- License:
- Abstract: The variational autoencoder (VAE) is a well-studied, deep, latent-variable model (DLVM) that efficiently optimizes the variational lower bound of the log marginal data likelihood and has a strong theoretical foundation. However, the VAE's known failure to match the aggregate posterior often results in \emph{pockets/holes} in the latent distribution (i.e., a failure to match the prior) and/or \emph{posterior collapse}, which is associated with a loss of information in the latent space. This paper addresses these shortcomings in VAEs by reformulating the objective function associated with VAEs in order to match the aggregate/marginal posterior distribution to the prior. We use kernel density estimate (KDE) to model the aggregate posterior in high dimensions. The proposed method is named the \emph{aggregate variational autoencoder} (AVAE) and is built on the theoretical framework of the VAE. Empirical evaluation of the proposed method on multiple benchmark data sets demonstrates the effectiveness of the AVAE relative to state-of-the-art (SOTA) methods.
Related papers
- Uniform Transformation: Refining Latent Representation in Variational Autoencoders [7.4316292428754105]
We introduce a novel adaptable three-stage Uniform Transformation (UT) module to address irregular latent distributions.
By reconfiguring irregular distributions into a uniform distribution in the latent space, our approach significantly enhances the disentanglement and interpretability of latent representations.
Empirical evaluations demonstrated the efficacy of our proposed UT module in improving disentanglement metrics across benchmark datasets.
arXiv Detail & Related papers (2024-07-02T21:46:23Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Learning Conditional Variational Autoencoders with Missing Covariates [0.8563354084119061]
Conditional variational autoencoders (CVAEs) are versatile deep generative models.
We develop computationally efficient methods to learn CVAEs and GP prior VAEs.
Our experiments on simulated datasets as well as on a clinical trial study show that the proposed method outperforms previous methods.
arXiv Detail & Related papers (2022-03-02T16:22:09Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
Inference in our GP model is done by a single feed forward pass through the network, significantly faster than semi-amortized methods.
We show that our approach attains higher test data likelihood than the state-of-the-arts on several benchmark datasets.
arXiv Detail & Related papers (2021-02-05T13:01:12Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Generalizing Variational Autoencoders with Hierarchical Empirical Bayes [6.273154057349038]
We present Hierarchical Empirical Bayes Autoencoder (HEBAE), a computationally stable framework for probabilistic generative models.
Our key contributions are two-fold. First, we make gains by placing a hierarchical prior over the encoding distribution, enabling us to adaptively balance the trade-off between minimizing the reconstruction loss function and avoiding over-regularization.
arXiv Detail & Related papers (2020-07-20T18:18:39Z) - Towards a Theoretical Understanding of the Robustness of Variational
Autoencoders [82.68133908421792]
We make inroads into understanding the robustness of Variational Autoencoders (VAEs) to adversarial attacks and other input perturbations.
We develop a novel criterion for robustness in probabilistic models: $r$-robustness.
We show that VAEs trained using disentangling methods score well under our robustness metrics.
arXiv Detail & Related papers (2020-07-14T21:22:29Z) - Preventing Posterior Collapse with Levenshtein Variational Autoencoder [61.30283661804425]
We propose to replace the evidence lower bound (ELBO) with a new objective which is simple to optimize and prevents posterior collapse.
We show that Levenstein VAE produces more informative latent representations than alternative approaches to preventing posterior collapse.
arXiv Detail & Related papers (2020-04-30T13:27:26Z) - A Batch Normalized Inference Network Keeps the KL Vanishing Away [35.40781000297285]
Variational Autoencoder (VAE) is widely used to approximate a model's posterior on latent variables.
VAE often converges to a degenerated local optimum known as "posterior collapse"
arXiv Detail & Related papers (2020-04-27T05:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.