The Importance of Time in Causal Algorithmic Recourse
- URL: http://arxiv.org/abs/2306.05082v1
- Date: Thu, 8 Jun 2023 10:20:08 GMT
- Title: The Importance of Time in Causal Algorithmic Recourse
- Authors: Isacco Beretta and Martina Cinquini
- Abstract summary: The application of Algorithmic Recourse in decision-making is a promising field that offers practical solutions to reverse unfavorable decisions.
Recent advancements have incorporated knowledge of causal dependencies, thereby enhancing the quality of the recommended recourse actions.
We motivate the need to integrate the temporal dimension into causal algorithmic methods to enhance recommendations' plausibility and reliability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of Algorithmic Recourse in decision-making is a promising
field that offers practical solutions to reverse unfavorable decisions.
However, the inability of these methods to consider potential dependencies
among variables poses a significant challenge due to the assumption of feature
independence. Recent advancements have incorporated knowledge of causal
dependencies, thereby enhancing the quality of the recommended recourse
actions. Despite these improvements, the inability to incorporate the temporal
dimension remains a significant limitation of these approaches. This is
particularly problematic as identifying and addressing the root causes of
undesired outcomes requires understanding time-dependent relationships between
variables. In this work, we motivate the need to integrate the temporal
dimension into causal algorithmic recourse methods to enhance recommendations'
plausibility and reliability. The experimental evaluation highlights the
significance of the role of time in this field.
Related papers
- Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning [12.490614705930676]
Current approaches to model-based offline Reinforcement Learning (RL) often incorporate uncertainty-based reward penalization.
We argue that this penalization introduces excessive conservatism, potentially resulting in suboptimal policies through underestimation.
We identify as an important cause of over-penalization the lack of a reliable uncertainty estimator capable of propagating uncertainties in the Bellman operator.
arXiv Detail & Related papers (2024-06-06T13:58:41Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Hindsight-DICE: Stable Credit Assignment for Deep Reinforcement Learning [11.084321518414226]
We adapt existing importance-sampling ratio estimation techniques for off-policy evaluation to drastically improve the stability and efficiency of so-called hindsight policy methods.
Our hindsight distribution correction facilitates stable, efficient learning across a broad range of environments where credit assignment plagues baseline methods.
arXiv Detail & Related papers (2023-07-21T20:54:52Z) - Causal Deep Learning [77.49632479298745]
Causality has the potential to transform the way we solve real-world problems.
But causality often requires crucial assumptions which cannot be tested in practice.
We propose a new way of thinking about causality -- we call this causal deep learning.
arXiv Detail & Related papers (2023-03-03T19:19:18Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
Uncertainty is a pervasive challenge in decision and risk management.
This paper develops a systematic understanding of such strategies, determine their range of application, and develop a framework to better employ them.
arXiv Detail & Related papers (2023-01-18T19:16:23Z) - Decomposing Counterfactual Explanations for Consequential Decision
Making [11.17545155325116]
We develop a novel and practical recourse framework that bridges the gap between the IMF and the strong causal assumptions.
texttt generates recourses by disentangling the latent representation of co-varying features.
Our experiments on real-world data corroborate our theoretically motivated recourse model and highlight our framework's ability to provide reliable, low-cost recourse.
arXiv Detail & Related papers (2022-11-03T21:26:55Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - The Statistical Complexity of Interactive Decision Making [126.04974881555094]
We provide a complexity measure, the Decision-Estimation Coefficient, that is proven to be both necessary and sufficient for sample-efficient interactive learning.
A unified algorithm design principle, Estimation-to-Decisions (E2D), transforms any algorithm for supervised estimation into an online algorithm for decision making.
arXiv Detail & Related papers (2021-12-27T02:53:44Z) - Temporal Difference Uncertainties as a Signal for Exploration [76.6341354269013]
An effective approach to exploration in reinforcement learning is to rely on an agent's uncertainty over the optimal policy.
In this paper, we highlight that value estimates are easily biased and temporally inconsistent.
We propose a novel method for estimating uncertainty over the value function that relies on inducing a distribution over temporal difference errors.
arXiv Detail & Related papers (2020-10-05T18:11:22Z) - Cautious Reinforcement Learning via Distributional Risk in the Dual
Domain [45.17200683056563]
We study the estimation of risk-sensitive policies in reinforcement learning problems defined by a Markov Decision Process (MDPs) whose state and action spaces are countably finite.
We propose a new definition of risk, which we call caution, as a penalty function added to the dual objective of the linear programming (LP) formulation of reinforcement learning.
arXiv Detail & Related papers (2020-02-27T23:18:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.