A review of UAV Visual Detection and Tracking Methods
- URL: http://arxiv.org/abs/2306.05089v1
- Date: Thu, 8 Jun 2023 10:48:11 GMT
- Title: A review of UAV Visual Detection and Tracking Methods
- Authors: Raed Abu Zitar, Mohammad Al-Betar, Mohamad Ryalat and Sofian
Kassaymehd
- Abstract summary: There are different techniques that depend on collecting measurements of the position, velocity, and image of the UAV.
The paper is a quick reference for a wide spectrum of methods that are used in the drone detection process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a review of techniques used for the detection and
tracking of UAVs or drones. There are different techniques that depend on
collecting measurements of the position, velocity, and image of the UAV and
then using them in detection and tracking. Hybrid detection techniques are also
presented. The paper is a quick reference for a wide spectrum of methods that
are used in the drone detection process.
Related papers
- Unsupervised UAV 3D Trajectories Estimation with Sparse Point Clouds [18.48877348628721]
This paper presents a cost-effective, unsupervised UAV detection method using spatial-temporal sequence processing.
Our solution placed 4th in the CVPR 2024 UG2+ Challenge, demonstrating its practical effectiveness.
We plan to open-source all designs, code, and sample data for the research community.com/lianghanfang/UnLiDAR-UAV-Est.
arXiv Detail & Related papers (2024-12-17T09:30:31Z) - UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection [0.03464344220266879]
Patch Intensity Convergence (PIC) technique generates high-fidelity bounding boxes for UAV detection without manual labeling.
This technique forms the foundation of UAVDB, a dedicated database designed specifically for UAV detection.
We benchmark UAVDB using state-of-the-art (SOTA) YOLO series detectors, providing a comprehensive performance analysis.
arXiv Detail & Related papers (2024-09-09T13:27:53Z) - A Comprehensive Review on Tree Detection Methods Using Point Cloud and
Aerial Imagery from Unmanned Aerial Vehicles [4.362788465317224]
This paper focuses on tree detection methods applied to UAV data collected by UAVs.
For the detection methods using images directly, this paper reviews these methods by whether or not to use the Deep Learning (DL) method.
This review could help researchers who want to carry out tree detection on specific forests and for farmers to use UAVs in managing agriculture production.
arXiv Detail & Related papers (2023-09-28T12:22:39Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
Unmanned Aerial Vehicles (UAVs) have been widely used in many areas, including transportation, surveillance, and military.
Previous works have simplified such an anti-UAV task as a tracking problem, where prior information of UAVs is always provided.
In this paper, we first formulate a new and practical anti-UAV problem featuring the UAVs perception in complex scenes without prior UAVs information.
arXiv Detail & Related papers (2023-06-27T19:30:23Z) - Vision-based Anti-UAV Detection and Tracking [18.307952561941942]
Unmanned aerial vehicles (UAV) have been widely used in various fields, and their invasion of security and privacy has aroused social concern.
We propose a visible light mode dataset called Dalian University of Technology Anti-UAV dataset, DUT Anti-UAV.
It contains a detection dataset with a total of 10,000 images and a tracking dataset with 20 videos that include short-term and long-term sequences.
arXiv Detail & Related papers (2022-05-22T15:21:45Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
This paper attempts to address the problem of drones detection from other flying drones variations.
The erratic movement of the source and target drones, small size, arbitrary shape, large intensity, and occlusion make this problem quite challenging.
To handle this, instead of using region-proposal based methods, we propose to use a two-stage segmentation-based approach.
arXiv Detail & Related papers (2021-03-31T17:43:31Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.