UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection
- URL: http://arxiv.org/abs/2409.06490v3
- Date: Tue, 8 Oct 2024 09:49:10 GMT
- Title: UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection
- Authors: Yu-Hsi Chen,
- Abstract summary: Patch Intensity Convergence (PIC) technique generates high-fidelity bounding boxes for UAV detection without manual labeling.
This technique forms the foundation of UAVDB, a dedicated database designed specifically for UAV detection.
We benchmark UAVDB using state-of-the-art (SOTA) YOLO series detectors, providing a comprehensive performance analysis.
- Score: 0.03464344220266879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of drone technology has made accurate Unmanned Aerial Vehicle (UAV) detection essential for surveillance, security, and airspace management. This paper presents a novel trajectory-guided approach, the Patch Intensity Convergence (PIC) technique, which generates high-fidelity bounding boxes for UAV detection without manual labeling. This technique forms the foundation of UAVDB, a dedicated database designed specifically for UAV detection. Unlike datasets that often focus on large UAVs or simple backgrounds, UAVDB utilizes high-resolution RGB video to capture UAVs at various scales, from hundreds of pixels to near-single-digit sizes. This extensive scale variation enables robust evaluation of detection algorithms under diverse conditions. Using the PIC technique, bounding boxes can be efficiently generated from trajectory or position data. We benchmark UAVDB using state-of-the-art (SOTA) YOLO series detectors, providing a comprehensive performance analysis. Our results demonstrate UAVDB's potential as a critical resource for advancing UAV detection, particularly in high-resolution and long-distance tracking scenarios.
Related papers
- Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
Unmanned Aerial Vehicles (UAVs) have been widely used in many areas, including transportation, surveillance, and military.
Previous works have simplified such an anti-UAV task as a tracking problem, where prior information of UAVs is always provided.
In this paper, we first formulate a new and practical anti-UAV problem featuring the UAVs perception in complex scenes without prior UAVs information.
arXiv Detail & Related papers (2023-06-27T19:30:23Z) - Investigation of UAV Detection in Images with Complex Backgrounds and
Rainy Artifacts [20.20609511526255]
Vision-based object detection methods have been developed for UAV detection.
UAV detection in images with complex backgrounds and weather artifacts like rain has yet to be reasonably studied.
This work also focuses on benchmarking state-of-the-art object detection models.
arXiv Detail & Related papers (2023-05-25T19:54:33Z) - Learning to Compress Unmanned Aerial Vehicle (UAV) Captured Video:
Benchmark and Analysis [54.07535860237662]
We propose a novel task for learned UAV video coding and construct a comprehensive and systematic benchmark for such a task.
It is expected that the benchmark will accelerate the research and development in video coding on drone platforms.
arXiv Detail & Related papers (2023-01-15T15:18:02Z) - Vision-based Anti-UAV Detection and Tracking [18.307952561941942]
Unmanned aerial vehicles (UAV) have been widely used in various fields, and their invasion of security and privacy has aroused social concern.
We propose a visible light mode dataset called Dalian University of Technology Anti-UAV dataset, DUT Anti-UAV.
It contains a detection dataset with a total of 10,000 images and a tracking dataset with 20 videos that include short-term and long-term sequences.
arXiv Detail & Related papers (2022-05-22T15:21:45Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-identification [21.48667873335246]
Recent development in deep learning allows vision-based counter-UAV systems to detect and track UAVs with a single camera.
The coverage of a single camera is limited, necessitating the need for multicamera configurations to match UAVs across cameras.
We propose the first new UAV re-identification data set, UAV-reID, that facilitates the development of machine learning solutions in this emerging area.
arXiv Detail & Related papers (2021-04-13T14:13:09Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.