SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth
- URL: http://arxiv.org/abs/2306.05238v2
- Date: Mon, 20 Nov 2023 06:57:05 GMT
- Title: SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth
- Authors: Zelin Liu, Xinggang Wang, Cheng Wang, Wenyu Liu, Xiang Bai
- Abstract summary: We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
- Score: 84.64121608109087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring robust and efficient association methods has always been an
important issue in multiple-object tracking (MOT). Although existing tracking
methods have achieved impressive performance, congestion and frequent
occlusions still pose challenging problems in multi-object tracking. We reveal
that performing sparse decomposition on dense scenes is a crucial step to
enhance the performance of associating occluded targets. To this end, we
propose a pseudo-depth estimation method for obtaining the relative depth of
targets from 2D images. Secondly, we design a depth cascading matching (DCM)
algorithm, which can use the obtained depth information to convert a dense
target set into multiple sparse target subsets and perform data association on
these sparse target subsets in order from near to far. By integrating the
pseudo-depth method and the DCM strategy into the data association process, we
propose a new tracker, called SparseTrack. SparseTrack provides a new
perspective for solving the challenging crowded scene MOT problem. Only using
IoU matching, SparseTrack achieves comparable performance with the
state-of-the-art (SOTA) methods on the MOT17 and MOT20 benchmarks. Code and
models are publicly available at \url{https://github.com/hustvl/SparseTrack}.
Related papers
- ConsistencyTrack: A Robust Multi-Object Tracker with a Generation Strategy of Consistency Model [20.259334882471574]
Multi-object tracking (MOT) is a critical technology in computer vision, designed to detect multiple targets in video sequences and assign each target a unique ID per frame.
Existed MOT methods excel at accurately tracking multiple objects in real-time across various scenarios.
We propose a novel ConsistencyTrack, joint detection and tracking(JDT) framework that formulates detection and association as a denoising diffusion process on bounding boxes.
arXiv Detail & Related papers (2024-08-28T05:53:30Z) - Dense Optical Tracking: Connecting the Dots [82.79642869586587]
DOT is a novel, simple and efficient method for solving the problem of point tracking in a video.
We show that DOT is significantly more accurate than current optical flow techniques, outperforms sophisticated "universal trackers" like OmniMotion, and is on par with, or better than, the best point tracking algorithms like CoTracker.
arXiv Detail & Related papers (2023-12-01T18:59:59Z) - Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
This study offers a bi-directional matching algorithm for multi-object tracking.
A stranded area is used in the matching algorithm to temporarily store the objects that fail to be tracked.
In the MOT17 challenge, the proposed algorithm achieves 63.4% MOTA, 55.3% IDF1, and 20.1 FPS tracking speed.
arXiv Detail & Related papers (2023-03-15T08:38:08Z) - DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking [13.104037155691644]
We propose an end-to-end MOT method, with a Gaussian filter-inspired dynamic search region refinement module.
Our method can achieve the state-of-the-art performance with reasonable speed.
arXiv Detail & Related papers (2022-03-21T04:14:06Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - Segment as Points for Efficient Online Multi-Object Tracking and
Segmentation [66.03023110058464]
We propose a highly effective method for learning instance embeddings based on segments by converting the compact image representation to un-ordered 2D point cloud representation.
Our method generates a new tracking-by-points paradigm where discriminative instance embeddings are learned from randomly selected points rather than images.
The resulting online MOTS framework, named PointTrack, surpasses all the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2020-07-03T08:29:35Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.