DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking
- URL: http://arxiv.org/abs/2203.10729v2
- Date: Fri, 15 Sep 2023 10:14:34 GMT
- Title: DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking
- Authors: JiaXu Wan, Hong Zhang, Jin Zhang, Yuan Ding, Yifan Yang, Yan Li and
Xuliang Li
- Abstract summary: We propose an end-to-end MOT method, with a Gaussian filter-inspired dynamic search region refinement module.
Our method can achieve the state-of-the-art performance with reasonable speed.
- Score: 13.104037155691644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many multi-object tracking (MOT) methods follow the framework of "tracking by
detection", which associates the target objects-of-interest based on the
detection results. However, due to the separate models for detection and
association, the tracking results are not optimal.Moreover, the speed is
limited by some cumbersome association methods to achieve high tracking
performance. In this work, we propose an end-to-end MOT method, with a Gaussian
filter-inspired dynamic search region refinement module to dynamically filter
and refine the search region by considering both the template information from
the past frames and the detection results from the current frame with little
computational burden, and a lightweight attention-based tracking head to
achieve the effective fine-grained instance association. Extensive experiments
and ablation study on MOT17 and MOT20 datasets demonstrate that our method can
achieve the state-of-the-art performance with reasonable speed.
Related papers
- Multi-object Tracking by Detection and Query: an efficient end-to-end manner [23.926668750263488]
Multi-object tracking is advancing through two dominant paradigms: traditional tracking by detection and newly emerging tracking by query.
We propose the tracking-by-detection-and-query paradigm, which is achieved by a Learnable Associator.
Compared to tracking-by-query models, LAID achieves competitive tracking accuracy with notably higher training efficiency.
arXiv Detail & Related papers (2024-11-09T14:38:08Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring [22.228127377617028]
The aim of in-trawl catch monitoring for use in fishing operations is to detect, track and classify fish targets in real-time from video footage.
We propose a novel MOT method, built upon an existing observation-centric tracking algorithm, by adopting a new iterative association step.
Our method offers improved performance in tracking targets with uniform appearance and outperforms state-of-the-art techniques on our underwater fish datasets as well as the MOT17 dataset.
arXiv Detail & Related papers (2023-04-10T18:55:10Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
We propose a novel one-stream tracking (OSTrack) framework that unifies feature learning and relation modeling.
In this way, discriminative target-oriented features can be dynamically extracted by mutual guidance.
OSTrack achieves state-of-the-art performance on multiple benchmarks, in particular, it shows impressive results on the one-shot tracking benchmark GOT-10k.
arXiv Detail & Related papers (2022-03-22T18:37:11Z) - On the detection-to-track association for online multi-object tracking [30.883165972525347]
We propose a hybrid track association algorithm that models the historical appearance distances of a track with an incremental Gaussian mixture model (IGMM)
Experimental results on three MOT benchmarks confirm that HTA effectively improves the target identification performance with a small compromise to the tracking speed.
arXiv Detail & Related papers (2021-07-01T14:44:12Z) - Dynamic Attention guided Multi-Trajectory Analysis for Single Object
Tracking [62.13213518417047]
We propose to introduce more dynamics by devising a dynamic attention-guided multi-trajectory tracking strategy.
In particular, we construct dynamic appearance model that contains multiple target templates, each of which provides its own attention for locating the target in the new frame.
After spanning the whole sequence, we introduce a multi-trajectory selection network to find the best trajectory that delivers improved tracking performance.
arXiv Detail & Related papers (2021-03-30T05:36:31Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
We introduce Deep Motion Modeling Network (DMM-Net) that can estimate multiple objects' motion parameters to perform joint detection and association.
DMM-Net achieves PR-MOTA score of 12.80 @ 120+ fps for the popular UA-DETRAC challenge, which is better performance and orders of magnitude faster.
We also contribute a synthetic large-scale public dataset Omni-MOT for vehicle tracking that provides precise ground-truth annotations.
arXiv Detail & Related papers (2020-08-20T08:05:33Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - End-to-End Multi-Object Tracking with Global Response Map [23.755882375664875]
We present a completely end-to-end approach that takes image-sequence/video as input and outputs directly the located and tracked objects of learned types.
Specifically, with our introduced multi-object representation strategy, a global response map can be accurately generated over frames.
Experimental results based on the MOT16 and MOT17 benchmarks show that our proposed on-line tracker achieved state-of-the-art performance on several tracking metrics.
arXiv Detail & Related papers (2020-07-13T12:30:49Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.