ReliableSwap: Boosting General Face Swapping Via Reliable Supervision
- URL: http://arxiv.org/abs/2306.05356v1
- Date: Thu, 8 Jun 2023 17:01:14 GMT
- Title: ReliableSwap: Boosting General Face Swapping Via Reliable Supervision
- Authors: Ge Yuan, Maomao Li, Yong Zhang, Huicheng Zheng
- Abstract summary: This paper proposes to construct reliable supervision, dubbed cycle triplets, which serves as the image-level guidance when the source identity differs from the target one during training.
Specifically, we use face reenactment and blending techniques to synthesize the swapped face from real images in advance.
Our face swapping framework, named ReliableSwap, can boost the performance of any existing face swapping network with negligible overhead.
- Score: 9.725105108879717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Almost all advanced face swapping approaches use reconstruction as the proxy
task, i.e., supervision only exists when the target and source belong to the
same person. Otherwise, lacking pixel-level supervision, these methods struggle
for source identity preservation. This paper proposes to construct reliable
supervision, dubbed cycle triplets, which serves as the image-level guidance
when the source identity differs from the target one during training.
Specifically, we use face reenactment and blending techniques to synthesize the
swapped face from real images in advance, where the synthetic face preserves
source identity and target attributes. However, there may be some artifacts in
such a synthetic face. To avoid the potential artifacts and drive the
distribution of the network output close to the natural one, we reversely take
synthetic images as input while the real face as reliable supervision during
the training stage of face swapping. Besides, we empirically find that the
existing methods tend to lose lower-face details like face shape and mouth from
the source. This paper additionally designs a FixerNet, providing
discriminative embeddings of lower faces as an enhancement. Our face swapping
framework, named ReliableSwap, can boost the performance of any existing face
swapping network with negligible overhead. Extensive experiments demonstrate
the efficacy of our ReliableSwap, especially in identity preservation. The
project page is https://reliable-swap.github.io/.
Related papers
- DynamicFace: High-Quality and Consistent Video Face Swapping using Composable 3D Facial Priors [24.721887093958284]
Face swapping transfers the identity of a source face to a target face while retaining the attributes like expression, pose, hair, and background of the target face.
We propose DynamicFace that leverages the power of diffusion model and plug-and-play temporal layers for video face swapping.
Our method achieves state-of-the-art results in face swapping, showcasing superior image quality, identity preservation, and expression accuracy.
arXiv Detail & Related papers (2025-01-15T03:28:14Z) - FaceTracer: Unveiling Source Identities from Swapped Face Images and Videos for Fraud Prevention [68.07489215110894]
FaceTracer is a framework specifically designed to trace the identity of the source person from swapped face images or videos.
In experiments, FaceTracer successfully identified the source person in swapped content and enabling the tracing of malicious actors involved in fraudulent activities.
arXiv Detail & Related papers (2024-12-11T04:00:17Z) - OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
Diffusion models have demonstrated impressive performance in face restoration.
We propose OSDFace, a novel one-step diffusion model for face restoration.
Results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics.
arXiv Detail & Related papers (2024-11-26T07:07:48Z) - G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
Reversible face anonymization seeks to replace sensitive identity information in facial images with synthesized alternatives.
This paper introduces Gtextsuperscript2Face, which leverages both generative and geometric priors to enhance identity manipulation.
Our method outperforms existing state-of-the-art techniques in face anonymization and recovery, while preserving high data utility.
arXiv Detail & Related papers (2024-08-18T12:36:47Z) - High-Fidelity Face Swapping with Style Blending [16.024260677867076]
We propose an innovative end-to-end framework for high-fidelity face swapping.
First, we introduce a StyleGAN-based facial attributes encoder that extracts essential features from faces and inverts them into a latent style code.
Second, we introduce an attention-based style blending module to effectively transfer Face IDs from source to target.
arXiv Detail & Related papers (2023-12-17T23:22:37Z) - BlendFace: Re-designing Identity Encoders for Face-Swapping [2.320417845168326]
BlendFace is a novel identity encoder for face-swapping.
It disentangles identity features into generators and guides generators properly as an identity loss function.
Extensive experiments demonstrate that BlendFace improves the identity-attribute disentanglement in face-swapping models.
arXiv Detail & Related papers (2023-07-20T13:17:30Z) - Face Transformer: Towards High Fidelity and Accurate Face Swapping [54.737909435708936]
Face swapping aims to generate swapped images that fuse the identity of source faces and the attributes of target faces.
This paper presents Face Transformer, a novel face swapping network that can accurately preserve source identities and target attributes simultaneously.
arXiv Detail & Related papers (2023-04-05T15:51:44Z) - Restricted Black-box Adversarial Attack Against DeepFake Face Swapping [70.82017781235535]
We introduce a practical adversarial attack that does not require any queries to the facial image forgery model.
Our method is built on a substitute model persuing for face reconstruction and then transfers adversarial examples from the substitute model directly to inaccessible black-box DeepFake models.
arXiv Detail & Related papers (2022-04-26T14:36:06Z) - SimSwap: An Efficient Framework For High Fidelity Face Swapping [43.59969679039686]
We propose an efficient framework, called Simple Swap (SimSwap), aiming for generalized and high fidelity face swapping.
Our framework is capable of transferring the identity of an arbitrary source face into an arbitrary target face while preserving the attributes of the target face.
Experiments on wild faces demonstrate that our SimSwap is able to achieve competitive identity performance while preserving attributes better than previous state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T12:23:10Z) - One Shot Face Swapping on Megapixels [65.47443090320955]
This paper proposes the first Megapixel level method for one shot Face Swapping (or MegaFS for short)
Complete face representation, stable training, and limited memory usage are the three novel contributions to the success of our method.
arXiv Detail & Related papers (2021-05-11T10:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.