BlendFace: Re-designing Identity Encoders for Face-Swapping
- URL: http://arxiv.org/abs/2307.10854v1
- Date: Thu, 20 Jul 2023 13:17:30 GMT
- Title: BlendFace: Re-designing Identity Encoders for Face-Swapping
- Authors: Kaede Shiohara, Xingchao Yang, Takafumi Taketomi
- Abstract summary: BlendFace is a novel identity encoder for face-swapping.
It disentangles identity features into generators and guides generators properly as an identity loss function.
Extensive experiments demonstrate that BlendFace improves the identity-attribute disentanglement in face-swapping models.
- Score: 2.320417845168326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The great advancements of generative adversarial networks and face
recognition models in computer vision have made it possible to swap identities
on images from single sources. Although a lot of studies seems to have proposed
almost satisfactory solutions, we notice previous methods still suffer from an
identity-attribute entanglement that causes undesired attributes swapping
because widely used identity encoders, eg, ArcFace, have some crucial attribute
biases owing to their pretraining on face recognition tasks. To address this
issue, we design BlendFace, a novel identity encoder for face-swapping. The key
idea behind BlendFace is training face recognition models on blended images
whose attributes are replaced with those of another mitigates inter-personal
biases such as hairsyles. BlendFace feeds disentangled identity features into
generators and guides generators properly as an identity loss function.
Extensive experiments demonstrate that BlendFace improves the
identity-attribute disentanglement in face-swapping models, maintaining a
comparable quantitative performance to previous methods.
Related papers
- FaceMe: Robust Blind Face Restoration with Personal Identification [27.295878867436688]
We propose a personalized face restoration method, FaceMe, based on a diffusion model.
Given a single or a few reference images, we use an identity encoder to extract identity-related features, which serve as prompts to guide the diffusion model in restoring high-quality facial images.
Experimental results demonstrate that our FaceMe can restore high-quality facial images while maintaining identity consistency, achieving excellent performance and robustness.
arXiv Detail & Related papers (2025-01-09T11:52:54Z) - iFADIT: Invertible Face Anonymization via Disentangled Identity Transform [51.123936665445356]
Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy.
This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform.
arXiv Detail & Related papers (2025-01-08T10:08:09Z) - FaceTracer: Unveiling Source Identities from Swapped Face Images and Videos for Fraud Prevention [68.07489215110894]
FaceTracer is a framework specifically designed to trace the identity of the source person from swapped face images or videos.
In experiments, FaceTracer successfully identified the source person in swapped content and enabling the tracing of malicious actors involved in fraudulent activities.
arXiv Detail & Related papers (2024-12-11T04:00:17Z) - OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
Diffusion models have demonstrated impressive performance in face restoration.
We propose OSDFace, a novel one-step diffusion model for face restoration.
Results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics.
arXiv Detail & Related papers (2024-11-26T07:07:48Z) - G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
Reversible face anonymization seeks to replace sensitive identity information in facial images with synthesized alternatives.
This paper introduces Gtextsuperscript2Face, which leverages both generative and geometric priors to enhance identity manipulation.
Our method outperforms existing state-of-the-art techniques in face anonymization and recovery, while preserving high data utility.
arXiv Detail & Related papers (2024-08-18T12:36:47Z) - High-Fidelity Face Swapping with Style Blending [16.024260677867076]
We propose an innovative end-to-end framework for high-fidelity face swapping.
First, we introduce a StyleGAN-based facial attributes encoder that extracts essential features from faces and inverts them into a latent style code.
Second, we introduce an attention-based style blending module to effectively transfer Face IDs from source to target.
arXiv Detail & Related papers (2023-12-17T23:22:37Z) - ReliableSwap: Boosting General Face Swapping Via Reliable Supervision [9.725105108879717]
This paper proposes to construct reliable supervision, dubbed cycle triplets, which serves as the image-level guidance when the source identity differs from the target one during training.
Specifically, we use face reenactment and blending techniques to synthesize the swapped face from real images in advance.
Our face swapping framework, named ReliableSwap, can boost the performance of any existing face swapping network with negligible overhead.
arXiv Detail & Related papers (2023-06-08T17:01:14Z) - Face Transformer: Towards High Fidelity and Accurate Face Swapping [54.737909435708936]
Face swapping aims to generate swapped images that fuse the identity of source faces and the attributes of target faces.
This paper presents Face Transformer, a novel face swapping network that can accurately preserve source identities and target attributes simultaneously.
arXiv Detail & Related papers (2023-04-05T15:51:44Z) - Learning Disentangled Representation for One-shot Progressive Face Swapping [92.09538942684539]
We present a simple yet efficient method named FaceSwapper, for one-shot face swapping based on Generative Adversarial Networks.
Our method consists of a disentangled representation module and a semantic-guided fusion module.
Our method achieves state-of-the-art results on benchmark datasets with fewer training samples.
arXiv Detail & Related papers (2022-03-24T11:19:04Z) - A Systematical Solution for Face De-identification [6.244117712209321]
In different tasks, people have various requirements for face de-identification (De-ID)
We propose a systematical solution compatible for these De-ID operations.
Our method can flexibly de-identify the face data in various ways and the processed images have high image quality.
arXiv Detail & Related papers (2021-07-19T02:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.