論文の概要: Unsupervised Compositional Concepts Discovery with Text-to-Image
Generative Models
- arxiv url: http://arxiv.org/abs/2306.05357v1
- Date: Thu, 8 Jun 2023 17:02:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 13:16:39.221809
- Title: Unsupervised Compositional Concepts Discovery with Text-to-Image
Generative Models
- Title(参考訳): テキスト・画像生成モデルによる教師なし合成概念の発見
- Authors: Nan Liu, Yilun Du, Shuang Li, Joshua B. Tenenbaum, Antonio Torralba
- Abstract要約: 本稿では、異なる画像の集合を考えると、各画像を表す生成概念を発見できるかという逆問題を考える。
本稿では,画像の集合から生成概念を抽出し,絵画やオブジェクト,キッチンシーンからの照明から異なる美術スタイルを分離し,イメージネット画像から得られる画像クラスを発見するための教師なしアプローチを提案する。
- 参考スコア(独自算出の注目度): 80.75258849913574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image generative models have enabled high-resolution image synthesis
across different domains, but require users to specify the content they wish to
generate. In this paper, we consider the inverse problem -- given a collection
of different images, can we discover the generative concepts that represent
each image? We present an unsupervised approach to discover generative concepts
from a collection of images, disentangling different art styles in paintings,
objects, and lighting from kitchen scenes, and discovering image classes given
ImageNet images. We show how such generative concepts can accurately represent
the content of images, be recombined and composed to generate new artistic and
hybrid images, and be further used as a representation for downstream
classification tasks.
- Abstract(参考訳): テキストから画像への生成モデルは、異なるドメイン間で高解像度の画像合成を可能にするが、ユーザーは生成したいコンテンツを指定する必要がある。
本稿では,異なる画像の集合が与えられた場合,各画像を表す生成概念を見つけることができるかという逆問題を考える。
本稿では,画像の集合から生成概念を発見し,絵画,絵画,絵画,照明の異なるスタイルをキッチンシーンから切り離し,イメージネット画像から画像クラスを発見するための教師なしアプローチを提案する。
このような生成概念が画像の内容を正確に表現し,再結合して新たな芸術的およびハイブリッドな画像を生成する方法を示し,下流分類タスクの表現としてさらに活用する。
関連論文リスト
- Visual Concept-driven Image Generation with Text-to-Image Diffusion Model [65.96212844602866]
テキスト・ツー・イメージ(TTI)モデルは複雑なシーンの高解像度画像を生成するという印象的な結果を示した。
近年のアプローチでは、これらの手法をパーソナライズ技術で拡張し、ユーザ認証の概念の統合を可能にしている。
しかし、人間の被写体のような複数の相互作用する概念を持つ画像を生成する能力は、1つにまたがったり、複数にまたがったりする概念は、いまだに説明がつかないままである。
これらの課題に対処する概念駆動型TTIパーソナライズフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T07:28:37Z) - DiffMorph: Text-less Image Morphing with Diffusion Models [0.0]
verb|DiffMorph|は、テキストプロンプトを使わずに概念を混ぜたイメージを合成する。
verb|DiffMorph|は、アーティストが描いたスケッチを条件付けして初期画像を取得し、モルヒネ画像を生成する。
トレーニング済みのテキスト・ツー・イメージ拡散モデルを用いて、各画像を忠実に再構成する。
論文 参考訳(メタデータ) (2024-01-01T12:42:32Z) - Semantic Draw Engineering for Text-to-Image Creation [2.615648035076649]
そこで本研究では,人工知能モデルをテーマ創造性に活用する手法を提案する。
この手法では、画像を作成する前に、すべての視覚要素を定量データ構造に変換する。
提案手法の有効性を,意味的精度,画像効率,計算効率の観点から評価する。
論文 参考訳(メタデータ) (2023-12-23T05:35:15Z) - Decoupled Textual Embeddings for Customized Image Generation [62.98933630971543]
カスタマイズされたテキスト・ツー・イメージ生成は、ユーザが指定した概念を少数の画像で学習することを目的としている。
既存の方法は、通常、過剰な問題に悩まされ、学習された概念と対象と無関係な情報を絡み合わせる。
フレキシブルなテキスト・ツー・イメージ生成のための不整合概念の埋め込みを学習する新しいアプローチであるDETEXを提案する。
論文 参考訳(メタデータ) (2023-12-19T03:32:10Z) - Taming Encoder for Zero Fine-tuning Image Customization with
Text-to-Image Diffusion Models [55.04969603431266]
本稿では,ユーザが指定したカスタマイズされたオブジェクトの画像を生成する手法を提案する。
この手法は、従来のアプローチで要求される長大な最適化をバイパスする一般的なフレームワークに基づいている。
提案手法は, 出力品質, 外観の多様性, 被写体忠実度を考慮した画像合成が可能であることを示す。
論文 参考訳(メタデータ) (2023-04-05T17:59:32Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
大規模テキスト・画像拡散モデルでは、強力な構成能力を持つ高忠実度画像を生成することができる。
これらのモデルは典型的には膨大な量のインターネットデータに基づいて訓練されており、しばしば著作権のある資料、ライセンスされた画像、個人写真を含んでいる。
本稿では,事前訓練されたモデルにおいて,目標概念の生成を防止し,効率的に概念を宣言する手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:59:42Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
本稿では,画像間翻訳の領域にテキスト・ツー・イメージ合成を取り入れた新しいフレームワークを提案する。
本手法は,事前学習したテキスト・画像拡散モデルのパワーを利用して,対象のテキストに適合する新たな画像を生成する。
論文 参考訳(メタデータ) (2022-11-22T20:39:18Z) - Unsupervised Layered Image Decomposition into Object Prototypes [39.20333694585477]
自動検出対象モデルの層に画像を分解するための教師なし学習フレームワークを提案する。
我々はまず,標準マルチオブジェクト合成ベンチマークにおける技術状況と同等の結果を提供することで,我々のアプローチを検証した。
次に、クラスタリング(SVHN、GTSRB)、コセグメンテーション(Weizmann Horse)、フィルタされていないソーシャルネットワークイメージからのオブジェクト発見を含むタスクにおける実画像へのモデルの適用性を示す。
論文 参考訳(メタデータ) (2021-04-29T18:02:01Z) - SketchEmbedNet: Learning Novel Concepts by Imitating Drawings [125.45799722437478]
モデルを用いて画像のスケッチを作成することによって学習した画像表現の特性について検討する。
この生成型クラスに依存しないモデルでは,新規な例,クラス,さらには新規なデータセットからの画像の情報埋め込みが,数ショットで生成されることが示されている。
論文 参考訳(メタデータ) (2020-08-27T16:43:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。