論文の概要: Anomaly Detection in Satellite Videos using Diffusion Models
- arxiv url: http://arxiv.org/abs/2306.05376v1
- Date: Thu, 25 May 2023 19:17:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-11 13:18:59.705761
- Title: Anomaly Detection in Satellite Videos using Diffusion Models
- Title(参考訳): 拡散モデルを用いた衛星映像の異常検出
- Authors: Akash Awasthi, Son Ly, Jaer Nizam, Samira Zare, Videet Mehta, Safwan
Ahmed, Keshav Shah, Ramakrishna Nemani, Saurabh Prasad, Hien Van Nguyen
- Abstract要約: 衛星データによる極端事象のリアルタイム検出は,災害管理に不可欠である。
動きの速い異常を捉えるために運動成分を必要としない拡散モデルを提案する。
- 参考スコア(独自算出の注目度): 5.378437695174892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The definition of anomaly detection is the identification of an unexpected
event. Real-time detection of extreme events such as wildfires, cyclones, or
floods using satellite data has become crucial for disaster management.
Although several earth-observing satellites provide information about
disasters, satellites in the geostationary orbit provide data at intervals as
frequent as every minute, effectively creating a video from space. There are
many techniques that have been proposed to identify anomalies in surveillance
videos; however, the available datasets do not have dynamic behavior, so we
discuss an anomaly framework that can work on very high-frequency datasets to
find very fast-moving anomalies. In this work, we present a diffusion model
which does not need any motion component to capture the fast-moving anomalies
and outperforms the other baseline methods.
- Abstract(参考訳): 異常検出の定義は予期せぬ事象の識別である。
衛星データによる山火事、サイクロン、洪水などの極端な事象のリアルタイム検出は、災害管理に不可欠である。
いくつかの地球観測衛星は災害に関する情報を提供するが、静止軌道上の衛星は毎分間隔でデータを供給し、事実上宇宙からビデオを生成する。
監視ビデオの異常を識別する技術は数多く提案されているが、利用可能なデータセットには動的な動作がないため、非常に高速な動きの異常を見つけるために非常に高周波なデータセットに作用する異常フレームワークについて議論する。
本研究では,移動速度の速い異常を捕捉し,他のベースライン法より優れる動き成分を必要としない拡散モデルを提案する。
関連論文リスト
- Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts [57.01985221057047]
本稿では、事前学習された視覚言語モデル(VLM)に基づく、弱教師付きビデオ異常検出および局所化のための時間的プロンプト埋め込み(WSVADL)を学習する新しい手法を提案する。
提案手法は,WSVADLタスクの3つの公開ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-12T03:31:29Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
弱教師付きビデオ異常検出のための動的消去ネットワーク(DE-Net)を提案する。
まず,異なる長さのセグメントから特徴を抽出できるマルチスケール時間モデリングモジュールを提案する。
そして,検出された異常の完全性を動的に評価する動的消去戦略を設計する。
論文 参考訳(メタデータ) (2023-12-04T09:40:11Z) - Holistic Representation Learning for Multitask Trajectory Anomaly
Detection [65.72942351514956]
そこで本研究では,異なる時間帯における骨格軌跡の包括的表現による予測運動の学習を提案する。
我々は、時間的閉鎖された軌道を符号化し、ブロックされたセグメントの潜在表現を共同学習し、異なる時間的セグメントにわたる期待運動に基づいて軌道を再構築する。
論文 参考訳(メタデータ) (2023-11-03T11:32:53Z) - Time series anomaly detection with reconstruction-based state-space
models [10.085100442558828]
本稿では,時系列データに対する新しい教師なし異常検出手法を提案する。
長い短期記憶(LSTM)ベースのエンコーダデコーダを用いて観測空間と潜時空間のマッピングを行う。
潜在空間の正規化は、通常のサンプルの状態に制約を課し、マハラノビス距離を用いて異常レベルを評価する。
論文 参考訳(メタデータ) (2023-03-06T17:52:35Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
イベント検出は輸送において重要なタスクであり、そのタスクは大規模なイベントが都市交通ネットワークの大部分を破壊した時点のポイントを検出することである。
空間的および時間的交通パターンを完全に把握することは課題であるが、効果的な異常検出には重要な役割を果たす。
我々は, 交通条件を表す有向重み付きグラフ群において, 時間間隔毎に異常を検知する新しい手法で問題を定式化する。
論文 参考訳(メタデータ) (2020-12-25T22:36:22Z) - Video Anomaly Detection by Estimating Likelihood of Representations [21.879366166261228]
ビデオ異常は、モーション表現、オブジェクトのローカライゼーション、アクション認識など、多くのサブタスクを解決するため、困難なタスクである。
伝統的に、この課題に対する解決策は、これらの特徴の空間的接続を無視しながら、ビデオフレームとその低次元特徴のマッピングに焦点を当ててきた。
最近のソリューションでは、K-Meansのようなハードクラスタリング技術を用いてこれらの空間的接続を分析することや、潜伏した特徴を一般的な理解にマップするためにニューラルネットワークを適用することに焦点を当てている。
潜在特徴空間における映像異常を解決するために,このタスクを密度推定問題に転送するための深い確率モデルを提案する。
論文 参考訳(メタデータ) (2020-12-02T19:16:22Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Localizing Anomalies from Weakly-Labeled Videos [45.58643708315132]
Weakly Supervised Anomaly Localization (WSAL)法を提案する。
異常映像の出現差にインスパイアされ, 隣接する時間領域の進化を異常映像の局所化のために評価した。
提案手法は,UCF-CrimeおよびTADデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2020-08-20T12:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。