MIMIC-IT: Multi-Modal In-Context Instruction Tuning
- URL: http://arxiv.org/abs/2306.05425v1
- Date: Thu, 8 Jun 2023 17:59:56 GMT
- Title: MIMIC-IT: Multi-Modal In-Context Instruction Tuning
- Authors: Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Jingkang
Yang, Chunyuan Li, Ziwei Liu
- Abstract summary: We present a dataset comprising 2.8 million multimodal instruction-response pairs, with 2.2 million unique instructions derived from images and videos.
Using the MIMIC-IT dataset, it has been observed that Otter demonstrates remarkable proficiency in multi-modal perception, reasoning, and in-context learning.
We release the MIMIC-IT dataset, instruction-response collection pipeline, benchmarks, and the Otter model.
- Score: 44.879418596312554
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High-quality instructions and responses are essential for the zero-shot
performance of large language models on interactive natural language tasks. For
interactive vision-language tasks involving intricate visual scenes, a large
quantity of diverse and creative instruction-response pairs should be
imperative to tune vision-language models (VLMs). Nevertheless, the current
availability of vision-language instruction-response pairs in terms of
quantity, diversity, and creativity remains limited, posing challenges to the
generalization of interactive VLMs. Here we present MultI-Modal In-Context
Instruction Tuning (MIMIC-IT), a dataset comprising 2.8 million multimodal
instruction-response pairs, with 2.2 million unique instructions derived from
images and videos. Each pair is accompanied by multi-modal in-context
information, forming conversational contexts aimed at empowering VLMs in
perception, reasoning, and planning. The instruction-response collection
process, dubbed as Syphus, is scaled using an automatic annotation pipeline
that combines human expertise with GPT's capabilities. Using the MIMIC-IT
dataset, we train a large VLM named Otter. Based on extensive evaluations
conducted on vision-language benchmarks, it has been observed that Otter
demonstrates remarkable proficiency in multi-modal perception, reasoning, and
in-context learning. Human evaluation reveals it effectively aligns with the
user's intentions. We release the MIMIC-IT dataset, instruction-response
collection pipeline, benchmarks, and the Otter model.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
multimodal large language models (MLLMs) combine the inherent power of large language models (LLMs) with the renewed capabilities to reason about the multimodal context.
Many recent works in visualization have demonstrated MLLMs' capability to understand and interpret visualization results and explain the content of the visualization to users in natural language.
In this work, we aim to fill the gap by utilizing the concept of visualization literacy to evaluate MLLMs.
arXiv Detail & Related papers (2024-06-24T17:52:16Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - Can Large Language Models Understand Context? [17.196362853457412]
This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models.
Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models.
As LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings.
arXiv Detail & Related papers (2024-02-01T18:55:29Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning [42.68425777473114]
Vision-language models (VLMs) enhanced by large language models (LLMs) have grown exponentially in popularity.
We introduce vision-language Model with Multi-Modal In-Context Learning (MMICL), a new approach to allow the VLM to deal with multi-modal inputs efficiently.
Our experiments confirm that MMICL achieves new state-of-the-art zero-shot performance on a wide range of general vision-language tasks.
arXiv Detail & Related papers (2023-09-14T17:59:17Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
Vision-language models (VLMs) have shown powerful capabilities in visual question answering and reasoning tasks.
In this paper, we demonstrate a method of aligning the embedding spaces of different modalities to the vision embedding space.
We show that using multiple modalities as input improves the VLM's scene understanding and enhances its overall performance in various tasks.
arXiv Detail & Related papers (2023-08-31T06:53:55Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
Vision-and-language (V-L) tasks require the system to understand both vision content and natural language.
We propose DiMBERT (short for Disentangled Multimodal-Attention BERT), which applies separated attention spaces for vision and language.
We show that DiMBERT sets new state-of-the-art performance on three tasks.
arXiv Detail & Related papers (2022-10-28T23:00:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.