Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception
- URL: http://arxiv.org/abs/2308.16493v1
- Date: Thu, 31 Aug 2023 06:53:55 GMT
- Title: Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception
- Authors: Riley Tavassoli, Mani Amani, Reza Akhavian
- Abstract summary: Vision-language models (VLMs) have shown powerful capabilities in visual question answering and reasoning tasks.
In this paper, we demonstrate a method of aligning the embedding spaces of different modalities to the vision embedding space.
We show that using multiple modalities as input improves the VLM's scene understanding and enhances its overall performance in various tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-language models (VLMs) have shown powerful capabilities in visual
question answering and reasoning tasks by combining visual representations with
the abstract skill set large language models (LLMs) learn during pretraining.
Vision, while the most popular modality to augment LLMs with, is only one
representation of a scene. In human-robot interaction scenarios, robot
perception requires accurate scene understanding by the robot. In this paper,
we define and demonstrate a method of aligning the embedding spaces of
different modalities (in this case, inertial measurement unit (IMU) data) to
the vision embedding space through a combination of supervised and contrastive
training, enabling the VLM to understand and reason about these additional
modalities without retraining. We opt to give the model IMU embeddings directly
over using a separate human activity recognition model that feeds directly into
the prompt to allow for any nonlinear interactions between the query, image,
and IMU signal that would be lost by mapping the IMU data to a discrete
activity label. Further, we demonstrate our methodology's efficacy through
experiments involving human activity recognition using IMU data and visual
inputs. Our results show that using multiple modalities as input improves the
VLM's scene understanding and enhances its overall performance in various
tasks, thus paving the way for more versatile and capable language models in
multi-modal contexts.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-Former is a lightweight transformer module designed to exploit the complementary strengths of CL and MIM.
X-Former first bootstraps vision-language representation learning and multimodal-to-multimodal generative learning from two frozen vision encoders.
It further bootstraps vision-to-language generative learning from a frozen LLM to ensure visual features from X-Former can be interpreted by the LLM.
arXiv Detail & Related papers (2024-07-18T18:39:54Z) - Masked Video and Body-worn IMU Autoencoder for Egocentric Action Recognition [24.217068565936117]
We present a novel method for action recognition that integrates motion data from body-worn IMUs with egocentric video.
To model the complex relation of multiple IMU devices placed across the body, we exploit the collaborative dynamics in multiple IMU devices.
Experiments show our method can achieve state-of-the-art performance on multiple public datasets.
arXiv Detail & Related papers (2024-07-09T07:53:16Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks [0.0]
In this work, we focus on unsupervised vision-language--action mapping in the area of robotic manipulation.
We propose a model-invariant training alternative that improves the models' performance in a simulator by up to 55%.
Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories.
arXiv Detail & Related papers (2024-04-02T13:25:16Z) - MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting [97.52388851329667]
We introduce Marking Open-world Keypoint Affordances (MOKA) to solve robotic manipulation tasks specified by free-form language instructions.
Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world.
We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
arXiv Detail & Related papers (2024-03-05T18:08:45Z) - Voila-A: Aligning Vision-Language Models with User's Gaze Attention [56.755993500556734]
We introduce gaze information as a proxy for human attention to guide Vision-Language Models (VLMs)
We propose a novel approach, Voila-A, for gaze alignment to enhance the interpretability and effectiveness of these models in real-world applications.
arXiv Detail & Related papers (2023-12-22T17:34:01Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
We develop an approach for learning visual affordances for guiding robot exploration.
We use a Transformer-based model to learn a conditional distribution in the latent embedding space of a VQ-VAE.
We show how the trained affordance model can be used for guiding exploration by acting as a goal-sampling distribution, during visual goal-conditioned policy learning in robotic manipulation.
arXiv Detail & Related papers (2023-05-28T17:53:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.